The Algorithmic Regulator

Can we detect an algorithmic agent?

Regulator

How Simplicity Reveals a Model at Work
Giulio Ruffini
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Kolmogorov complexity (K

Agents need in the soup need to model the “world” (Regulator theorem).

But what is a model of a dataset? A short description of the dataset.

Definition (Model of a dataset)

A (succinct) program that generates (or compresses) the dataset.

The computational perspective leads us directly into the heart of AIT: the
Kolmogorov complexity of a dataset (X) is the length of the shortest program
capable of generating the dataset'’. %2
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The algorithmic agent (minimal model?
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Science as Compression — Physics
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Natural Selection as Mathemadtics

EVOLUTION: NATURE’S MATHEMATICAL
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Mutual algorithmic information (M

With KX at hand, we can define an algorithmic version of mutual information:

Definition (Mutual algorithmic information complexity M)

The mutual algorithmic information M (x : y) between two strings x and y, 1s given by

M(z:y) = X(z)+ KX(y) — X (z,y)

18D
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The Foundational Intuition

“Every good regulator of a
system must be a model

of that system.”
—Conant & Ashby, 1970

* Influential: Underpins core ideas in
neuroscience and control theory.

o |Intuitive: Aligns with our common-sense
understanding of control.

 Informal: The original theorem has been
criticized for vague definitions of “model”
and “goodness,” and for a proof that
doesn't fully deliver the headline claim.

Regulator
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The Rigorous, But Restricted,
Successor

The Internal Model Principle (IMP) provides
the mathematical rigor the Good Regulator
Theorem lacked.

 Precise & Falsifiable: For a given signal
class, it states that a controller must
embed a dynamical copy of the signal
generator for perfect regulation.

» Powerful: A standard backbone for modern
robust control.

* Limited: The classical IMP is a linear result.
It applies to Linear, Time-Invariant (LTI)
systems. While non-linear generalizations
exist, they require strong structural

hypotheses and are not universally applicable.

A) NotebooklM



A New Perspective: Regulation as Compression K

We can reframe the problem using Algorithmic Information Theory (AIT). Instead of
thinking about “goodness,” we think about simplicity and compressibility.

A good regulator is one that makes the world's output
simple, predictable, and thus, highly compressible.
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The Language of Algorithmic Information

L
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Kolmogorov Complexity, K(x)

The length of the shortest program (or
recipe) on a universal computer that can
produce the string x.

Intuition: It's the ultimate measure of
compressibility. A random-looking string
has K(x) = |x|, while a simple string (like
“000...0’) has a very small K(x).

e. Regulator

Mutual Algorithmic Information, M(W:R)

The amount of shared algorithmic
structure. M(W:R) = K(W) - K(W|R).

Intuition: The number of bits saved when
describing the World W if you are already
given the Reqgulator R. This is our new,
rigorous definition of a “model.” A regulator
“models” the world if M(W:R) > 0.
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Contrastive Testing

11 |O

010101101 01/000

/7N

N
o B <}={>< World W >
11111 00 r/w

N

Regulator R [<—=> 1.0,

r/w 0101001
x = 0w

O 00001 OOOOOO0OOO0OO0O0D|—/m7m

000000000

<=

r/w

OO

O

0

O

O

OO0 0|00 O

O 0 O

-

————————

~

< World W >

NS

Regulator &

<}:\l> 0¢0000000
0CO000N00

r/w | 0000000

x=0w

olo o

1

1

01001 0|1

0

0

Figure 1: Regulation scenario. A) A good regulator R interacts with the world W so that
the readout x = Ow of the world’s output is clamped to a simple, highly compressible
sequence (e.g., almost all zeros). B) When the regulator is turned off, the output is more

complex.



A Simple Test to Measure Success

We measure the regulator’s effect by comparing two scenarios for a given World W.

World W

Regulator OFF: (W, ®)

produces output y.

— K(y) = K(outputygg)

A
Regulator ON: (W, R) '

R

produces output x. X
K(x) = K(outputgy)

The Compressibility Gap A
A = K(outputyrr) — K(outputgy)

A is the number of bits of compression achieved by the regulator. A “good” algorithmic regulator
Is simply one where A > 0. The larger the A, the better the regulator.
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The Algorithmic Regulator Theorem

Given that we observe a successful requlation (a large A), what can we infer
about the relationship between the World W and the Regulator R?

The Cost of Success

For every bit of compression
- | you achieve (A), your
P(( ‘/‘/ R) ‘.’.E) < C . ZM(WR) . explanation of that success
) — becomes exponentially less
likely by default. Seeing a

= simple output Is surprising
he Currency of a Model and requires a good

The only way to overcome this exponential explanation.

unlikelihood is for the World and Regqulator to

share information (M (W:R)). This term
pays for the "cost of success.”

Sustained, successful regulation (a large A > 0) makes it exponentially
unlikely that the regulator doesn’t contain a model of the world.
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From Evidence to Agency ¥

The theorem provides grounds to infer an agent-like structure purely
from observing a system's ability to compress its output. We can say the
regulator behaves as if it were an agent with these components:

A Model

Justified because a large

A makes M(W:R) > 0
exponentially likely. The

regulator shares
information with the
world.

A Planner

The regulator's
deterministic policy g
itself, which acts as if it

were a planner executing
actions to achieve the
objective, given its
model.

An Objective

Justified because the
regulator's actions are
consistent with maximizing
the scalar quantity A (or
equivalently, minimizing
the output complexity

K(x)).

An 'As-If' Agent, Justified by Data.
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A Complement, Not a Replacement
Aspect GRT (Conant-Ashby) IMP (Francis-Wonham) _

Setting / Objects Shannon entropy LTI plants deterministic prefix programs.

Definition of “model” | homomorphism dynamical copy of exosystem M(W:R)>0

Notion of “goodness” | minimize H(Z) perfect asymptotic tracking compressibility gap A > 0

Core Theorem Every good regulator Lpentegs modgl pr.l nmple. A regulator with a large A is

Statement must contain a model of | Nolds that regulation is possible | eynonentially unlikely to not
the system. if the regulator incorporates a | contain a model of the world.

model of the exosystem.

distribution-free, single-

Conceptual cybernetics | Design backbone for robust episode diagnostics and a

Scope / Use

K¢ reguiation universal Occam calculus.
Information Source Ensemble statistics System dynamics Observed data trace
Mathematical o T :
e Probability theory Control theory Algorithmic Information Theory
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e
From Theory to a Testable Claim

The Challenge The Practical Solution
Kolmogorov Complexity K(x) is a We can use real-world, off-the-shelf compressors
theoretical limit and is not computable. to get a practical upper bound on K(x). We

simply replace K(x) with LC(x), the compressed
length of x using a fixed compressor C.

The Experimental Recipe

1. Fix alossless compressor C.
Quantize the system'’s readout if necessary.

2
3. Compute two code lengths: LC(output_ON) and LC(output_OFF).
4. The difference, A = LC(output _OFF) - LC(output_ON), is your evidence. Persistent A>0

Is cumulative evidence of model content.

Examples of Practical Compressors

Classic Algorithmic Modern

Lempel-Ziv family (gzip, 1z4) Block Decomposition Learned compressors using Neural
Method (BDM) Networks (VAEs, Transformers)
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A Universal Tool for Probing Agency

e Distribution-Free: It makes no assumptions about the underlying probability
distributions of the world or signals. It works on single, individual sequences.

e Architecture-Agnostic: It does not assume linearity, an E/P split, or a particular
causal structure. It only requires a computable (W,R) — x mapping.

e Universal: It provides a principled, quantitative method to test for modeling and
agency in any system where you can perform an ON/OFF experiment.
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Simplicity is the signature
— of amodel at work. —

The more a system simplifies its world,
the more of that world it must contain.
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__ Kolmogorov
— Complexity of Inputs

Metric of Agency: Low K(x) implies agent’s
* M internal model predicts environment.
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Life and the Algorithmic Regulator (Ruffini 2025, arXiv
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