

From Kolmogorov Theory to Computational Modeling and Brain Stimulation

Dr. Giulio Ruffini Co-founder & CTO Starlab / Neuroelectrics

Barcelona, July 7, 2025

NE neuroelectrics ®

OUR MISSION

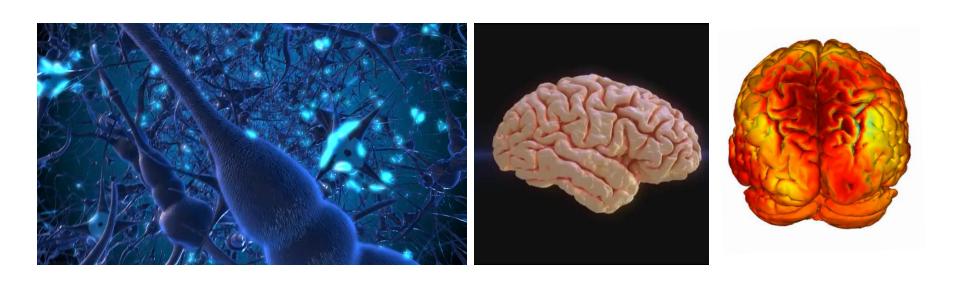
To deliver life-changing therapies that empower patients and families living with neuropsychiatric disorders.

Treat patients with Epilepsy, Major Depressive Disorder, and other neuropsychiatric disorders with our novel breakthrough-designated personalized medical technology: **Neurotwin-powered Transcranial Electrical Stimulation (tES)**.

Physics and the big questions

What is mass, space, time?

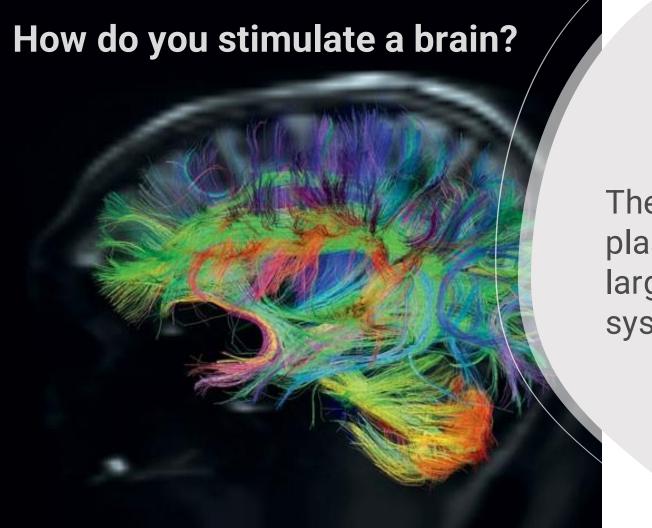
What is, indeed, **Reality**?


Why is math so powerful?

And who is this famous

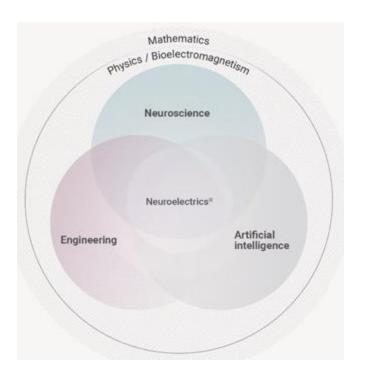
Observer? Who am AI?

The Electric Brain



The brain appears to **compute electrically**. What do electric field **patterns** have to do with **mind**?

Can we harness them for **communication** or **therapy**?



The brain is a plastic network, a large dynamical system

A Solid Foundation with Robust Modeling

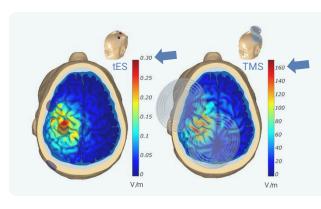
Leveraging expertise across mathematics, physics, and neuroscience, unique models can be developed to provide novel insights

PHYSIOLOGICAL BRAIN MODELING

Dynamical brain network models can be used to simulate brain activity for each patient

BIOPHYSICAL BRAIN MODELING

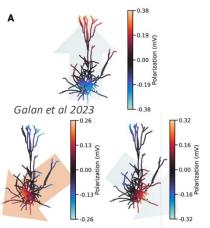
The physical interaction between the brain and the world (measurements or brain stimulation) requires a physical layer.



COMPLETE NEUROTWIN

Complete digital twin of the brain of a patient ready for optimization of stimulation protocol or analysis

Mechanism of Action Transcranial Electrical Stimulation (tES)



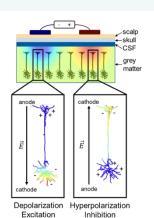
Magnitude of Stimulation

Low electrical current injected non-invasively through the scalp (< 4mA)

Acute and long-lasting effects, depending on the intensity, montage and duration

Mechanism of Action

Introduction of current generates electric field in the brain


Electric field couples with neurons, altering their membrane potential

Modulates neuronal firing patterns

→ heightening/reducing excitability or
entraining oscillations

Leads to synaptic remodeling

→ "rewiring" the brain

J Physiol. 2000 Sep 15; 527(Pt 3): 633–639. doi: 10.1111/i.1469-7793.2000.t01-1-00633.x

PMCID: PMC2270099

Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation

M A Nitsche and W Paulus

Review > Nat Neurosci. 2018 Feb;21(2):174-187. doi: 10.1038/s41593-017-0054-4. Epub 2018 Jan 8.

Studying and modifying brain function with noninvasive brain stimulation

Rafael Polanía 1, Michael A Nitsche 2 3, Christian C Ruff 4

Review > Clin Neurophysiol. 2016 Feb;127(2):1031-1048. doi: 10.1016/j.clinph.2015.11.012.

A technical guide to tDCS, and related non-invasive brain stimulation tools

A J Woods ¹, A Antal ², M Bikson ³, P S Boggio ⁴, A R Brunoni ⁵, P Celnik ⁶, L G Cohen ⁷, F Fregni ⁸, C S Herrmann ⁹, E S Kappenman ¹⁰, H Knotkova ¹¹, D Liebetanz ², C Miniussi ¹², P C Miranda ¹³, W Paulus ², A Priori ¹⁴, D Reato ³, C Stagg ¹⁵, N Wenderoth ¹⁶, M A Nitsche ¹⁷.

> Brain Stimul. 2020 Mar-Apr;13(2):287-301. doi: 10.1016/j.brs.2019.10.014. Epub 2019 Oct 18.

Direct current stimulation boosts hebbian plasticity in vitro

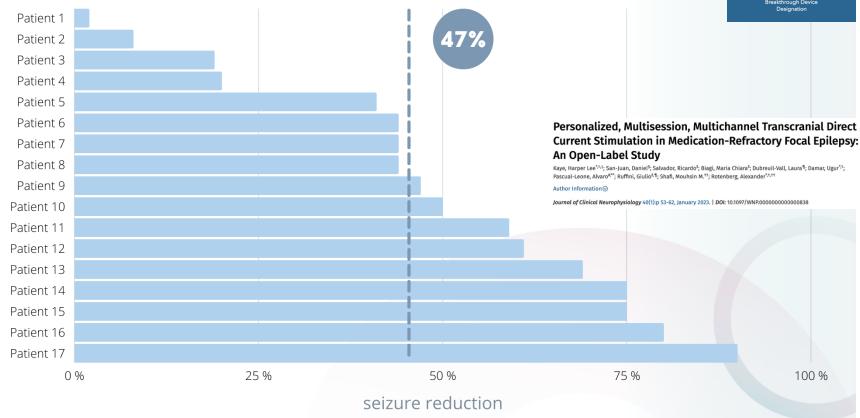
Greg Kronberg ¹, Asif Rahman ², Mahima Sharma ², Marom Bikson ², Lucas C Parra ²

Review > Neurophysiol Clin. 2016 Dec;46(6):319-398. doi: 10.1016/j.neucli.2016.10.002.

A comprehensive database of published tDCS clinical trials (2005-2016)

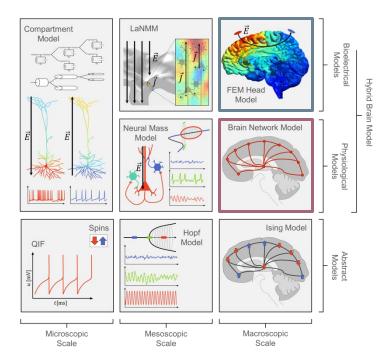
Jean-Pascal Lefaucheur 1

Co-Principal Investigator Dr. Alexander Rotenberg



MASSACHUSETTS
LIFE SCIENCES CENTER

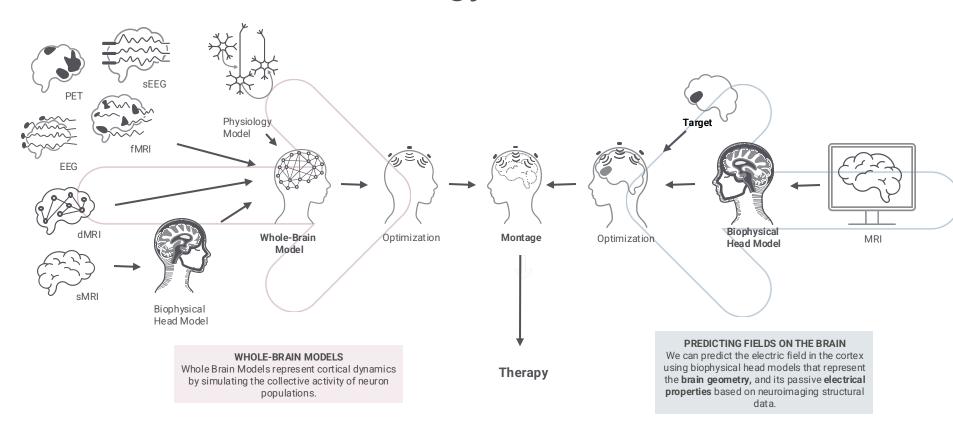
REDUCING SEIZURES BY 47%


Neurotwins in Epilepsy

NE neuroelectrics®

AIM

- 1. Develop advanced individualized whole-brain models that predict the physiological effects of tES
- 2. Use them to design optimal stimulation protocols in the context of neuropsychiatric disorders



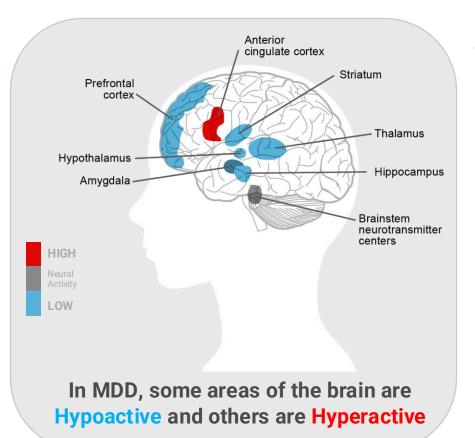
Neurotwin: Mathematical model of the human brain comprising *either* or *both* physical and physiological aspects in the context of a disorder for the purpose of optimizing therapy.

Neurotwin Technology

- Whole-brain Optimization methods
- Clinical study design and analysis

The project is investigating the impact weak electric fields have on the physiology of neurons and neural networks. The key objective is to understand if these electric pulses can improve the patient-specific epileptogenic network.

Multicenter Clinical Epilepsy Sept 2024-27


Neurotwins for advanced tDCS in focal epilepsy

How can we help patients with psychiatric conditions?

Major Depressive Disorder (MDD)

Target indication: refractory MDD

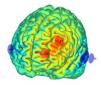
- >28M patients globally
- Therapeutic alternatives include TMS, VNS, ECT

Mechanistic rationale

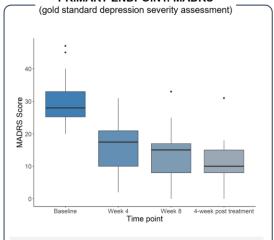
- MDD is characterized by reduced left vs right neuronal activity in the dorsolateral prefrontal cortex (DLPFC)
- Application of tDCS on left **DLPFC** stimulates neuronal activity in this region, restoring electrophysiological function
- Plasticity from repeated application is to lead to healthy rewiring of frontolimbic network

Clinical evidence

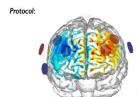
- >20 RCTs conducted to date; >1,000 patients studied
- LeFaucheur (2017) meta-analyses supports Level B recommendation – probable efficacy – for anodal TES of the left DLPFC in MDD patients with drug resistance


MDD Open Label Pilot Study Results

Montages, biotypes and etiology matter

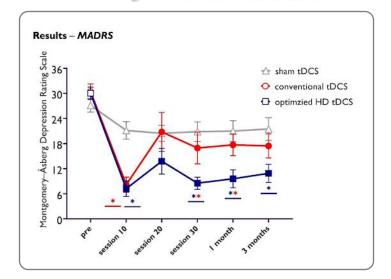

NE neuroelectrics®

Neuroelectrics Home pilot MDD1


PRIMARY ENDPOINT: MADRS

- · Avg Baseline: 30.1 (ITT)
- · Avg Improvement @ Week 4 Post-treat: 19.8 pts
- Min. Clinical-Important Difference (MCID): 3-5 pts

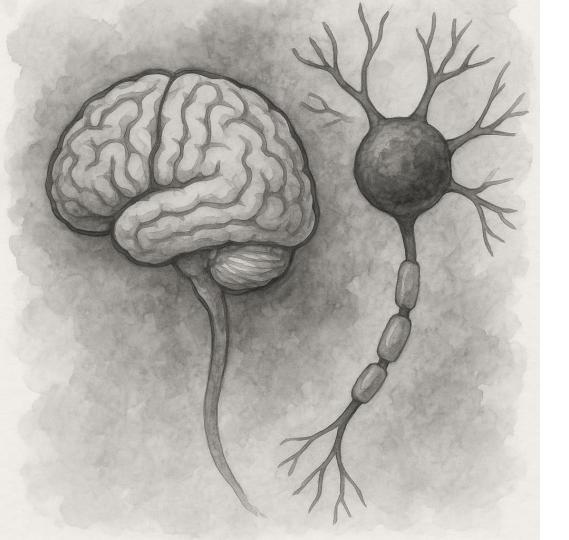
Optimized HD-tDCS protocol for clinical use in patients with major depressive disorder


Mohammad Ali Salehinejad, Marzieh Abdi, Mohsen Dadashi, Reza Rostami, Ricardo Salvador, Giulio Ruffini, Michael A. Nitsche

AF3: 1246 AF4: -1112 F3: 1101 F4: -1284 F8: -623 FC5: -978

FC6: 1650

Total injected current (uA): 3997 Maximum current any electrode (uA): 1650



What is Depression?

MDD is not a single condition.

Etiology is diverse.

MDD is characterized by a persistent **first-person experience** of sadness, hopelessness, and a lack of interest or pleasure in activities.

Neurology is primarily concerned with the **physical** and **structural** aspects of the nervous system and its diseases.

Psychiatry focuses on the mental, emotional, and behavioral aspects of wellbeing.

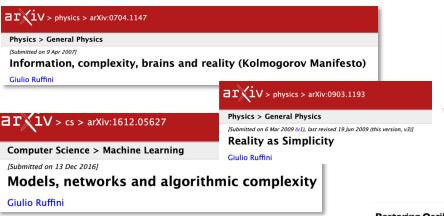
The **experience machine!**

... from the brain, and from the brain only, arise our pleasures, joys, laughter and jests, as well as our sorrows, pains, griefs, and tears.

Hippocrates (circa 460-370 BCE)

How can this experience?

The Challenge


We are missing a principled, unifying framework to define and operationalize what we want to model and understand what its physiological signatures are – how to measure it.

Defining Experience/Consciousness

- 1. A brief intro to Kolmogorov theory (KT)
- 2. Emotion, depression, and the role of valence

Kolmogorov Theory (KT)

Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics Perspective

by Giulio Ruffini 1.* → ③, Edmundo Lopez-Sola 1.2 → ⑤, Jakub Vohryzek 2.3 → and Roser Sanchez-Todo 1.2 → ⑤

Open Access Perspective

The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder

by Giulio Ruffini 1.* → ⑥, Francesca Castaldo 1.* → ⑥, Edmundo Lopez-Sola 1.2 → ⑥, Roser Sanchez-Todo 1.2 → ⑥ and Jakub Vohryzek 2.3 →

Cross-Frequency Coupling as a Neural Substrate for Prediction Error Evaluation: A Laminar Neural Mass Modeling Approach

⑤ Giulio Ruffini, ⑥ Edmundo Lopez-Sola, ⑥ Raul Palma, ⑥ Roser Sanchez-Todo, ⑥ Jakub Vohryzek, ⑥ Francesca Castaldo, ⑥ Karl Friston doi: https://doi.org/10.1101/2025.03.19.644090

Restoring Oscillatory Dynamics in Alzheimer's Disease: A Laminar Whole-Brain Model of Serotonergic Psychedelic Effects

[6] Jan C. Gendra, © Edmundo Lopez-Sola, © Francesca Castaldo, © Elia Lleal-Custey, © Roser Sanchez-Todo, © Jakub Vohryzek, © Ricardo Salvador, © Ralph G. Andrzejak, © Giulio Ruffini, the Alzheimer's Disease Neuroimaging Initiative
doi: https://doi.org/10.1101/2024.12.15.628565

A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings

Roser Sanchez-Todo ° ^f, André M. Bastos ^b, Edmundo Lopez-Sola °, Borja Mercadal °, Emiliano Santarnecchi ^c, Earl K. Miller ^{d e}, Gustavo Deco ^{f g h i}, Giulio Ruffini ^{o j k} 久 ⊠

Journal of Artificial Intelligence and Consciousness | Vol. 09, No. 02, pp. 153-191 (2022)

Neuroscience of Consciousness, Volume 2017, Issue 1, 2017, nix019,

An algorithmic information theory of consciousness

AIT Foundations of Structured Experience

Giulio Ruffini 🖂 and Edmundo Lopez-Sola

LSD-induced increase of Ising temperature and algorithmic complexity of brain dynamics

Giulio Ruffini . Giada Damiani, Diego Lozano-Soldevilla, Nikolas Deco, Fernando E. Rosas, Narsis A. Kiani, Adrián Ponce-Alvarez, Morten L. Kringelbach, Robin Carhart-Harris, Gustavo Deco

Open Access Perspective

Open Access Articl

Giulio Ruffini

Structured Dynamics in the Algorithmic Agent

by Giulio Ruffini ^{1,*} ⊠ ⁽⁰⁾, Francesca Castaldo ¹ ⊠ ⁽⁰⁾ and Jakub Vohryzek ^{2,3} ⊠ ⁽¹⁾

Navigating Complexity: How Resource-Limited Agents Derive Probability and Generate Emergence

> Giulio Ruffini' Neuroelectrics

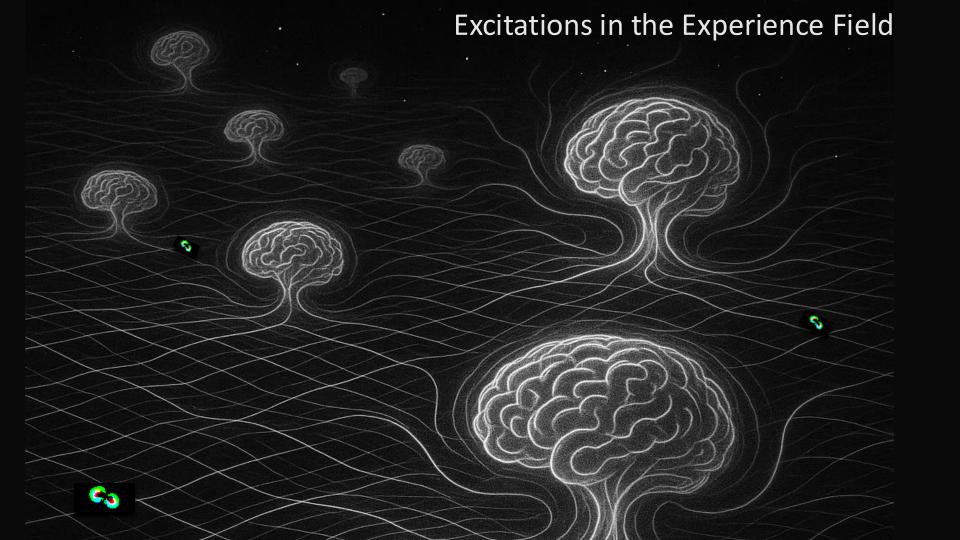
Fast Interneuron Dysfunction in Laminar Neural Mass Model Reproduces Alzheimer's Oscillatory Biomarkers

© Roser Sanchez-Todo, © Borja Mercadal, © Edmundo Lopez-Sola, © Maria Guasch-Morgades, © Gustavo Deco. © Giulio Ruffini

doi: https://doi.org/10.1101/2025.03.26.645407

Kolmogorov Theory of Consciousness

- 1. Postulate: There is Experience
- 2. Focus on **Structured Experience**


There is *Pure Experience*

The immediate, subjective sense of "what it feels like" to be oneself at any given moment.

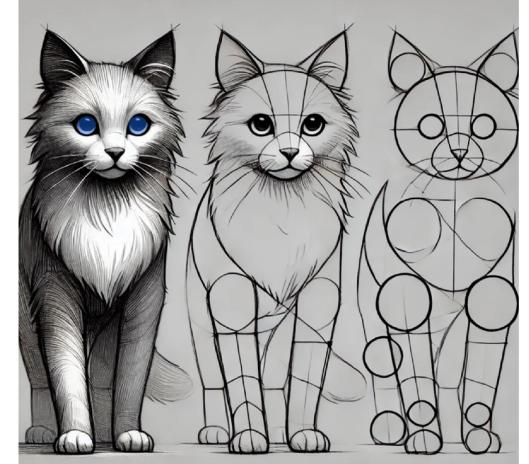
What is it like to be you?

What is it like to be a bat? (Thomas Nagel 1974)

What is structured experience?

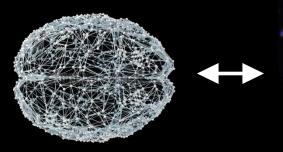
The spatial, temporal, and conceptual organization of our first-person experience of the world and of ourselves as agents in it.

An algorithmic information theory of consciousness 3

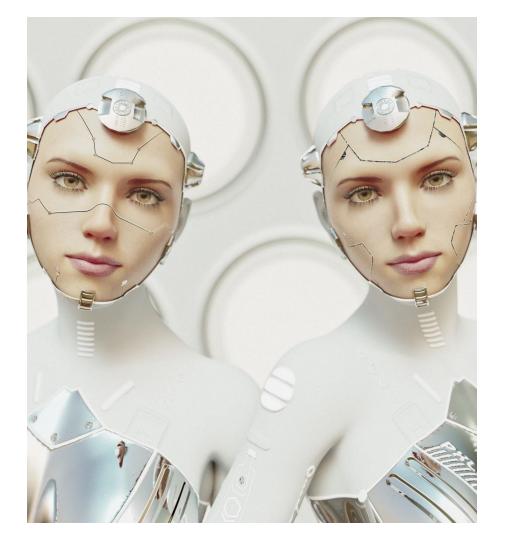

Giulio Ruffini 🛎

Neuroscience of Consciousness, Volume 2017, Issue 1, 2017, nix019,

https://doi.org/10.1093/pc/pix01

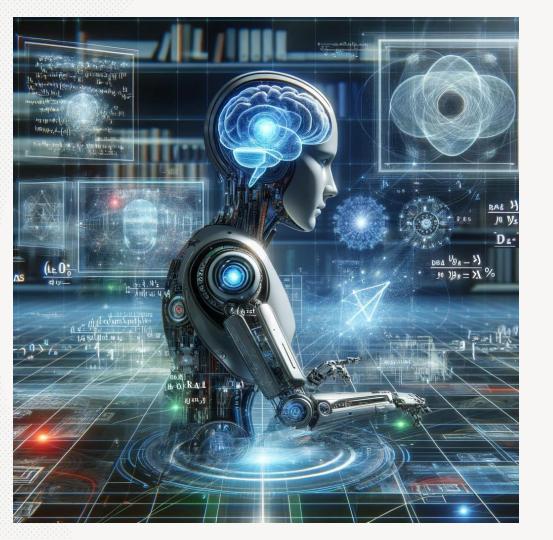

Coarsegrained modeling, lossy compression to extract useful structure

Kolmogorov Complexity is the limit!


What is special about brains (or life)?

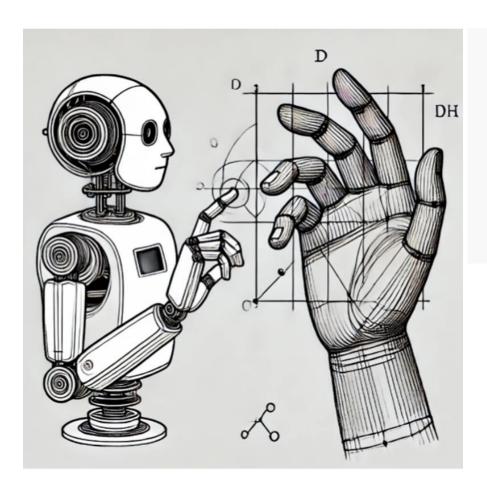
#1 High Mutual Algorithmic Information with the world in compressed format

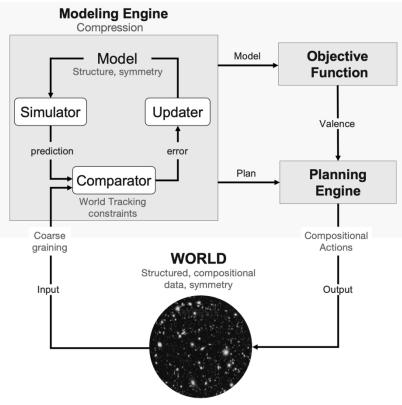
#2 The compute: modeling and decision making



KT in a Nutshell

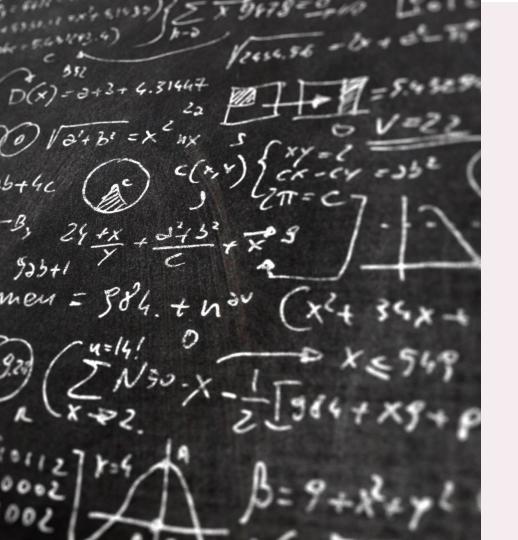
Ask what creates structured experience in an algorithmic context


- A. Evolution gives rise to agents (and we are agents)
- B. Agents run *models of the world* and enjoy structured experience!
- C. Agents have *goals*. This gives origin to *valence* & *emotions*


What is an algorithmic agent?

A computational system that interacts effectively with its environment by planning actions using compressive predictive models to maximize an objective function.

Using a model entails computation and dynamics.



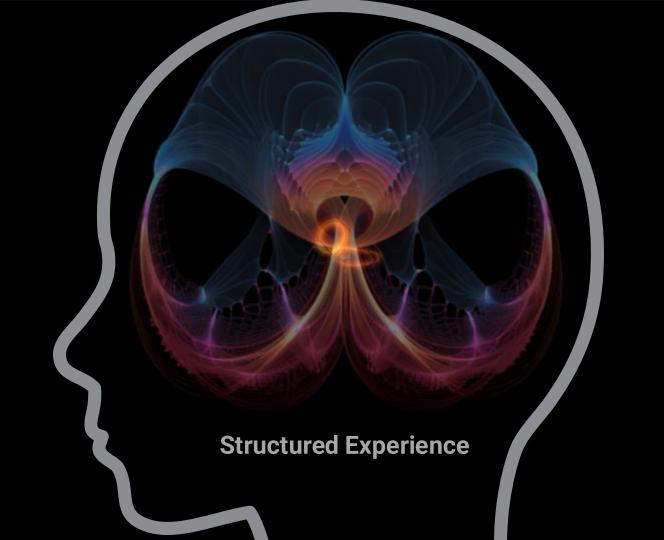
AGENT

Open Access Perspective

The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder

What is a model?

- A program that allows you to compress coarse-grained information
- A simplified but useful representation of reality
- A mathematical object


A model is computation and dynamics.

The brain computes*, it is a dynamical system.

Dynamics is mathematics and geometry.

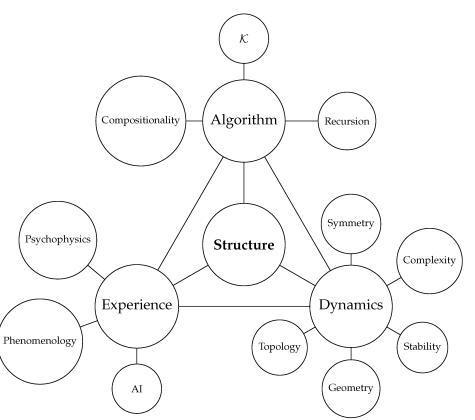
* Classical or Quantum. Quantum ≠ Hypercomputation. Does not compute "new" things.

How do we define model structure?

Formalize *model* using **group theory,** capturing the idea of **simplicity** as **symmetry**. Then, we can show that

- 1) Tracking the world forces the agent as a dynamical system to mirror the symmetry in the data. Dynamics collapses to **reduced manifolds**.
- 2) The hierarchical nature of world data leads to **coarse-graining** and the notion of hierarchical constraints and manifolds

The central hypothesis in KT


An agent has **structured experience** (S) to the extent it has access to encompassing and **compressive models** to interact with the world.

More specifically, the event of structured experience arises in the act of running models.

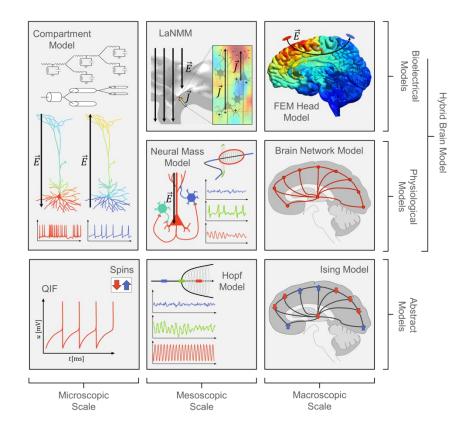
Model structure determines the structure of experience.

Successful comparison with data leads to **wakeful presence**.

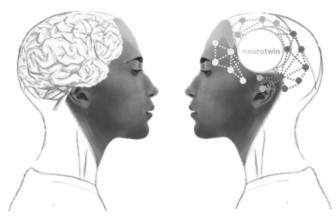
Much structured experience may be unreported!

KT in practice #1

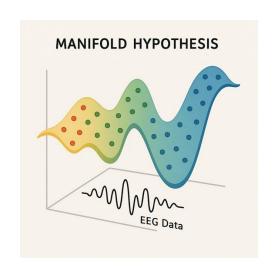
Requirements for structured experience

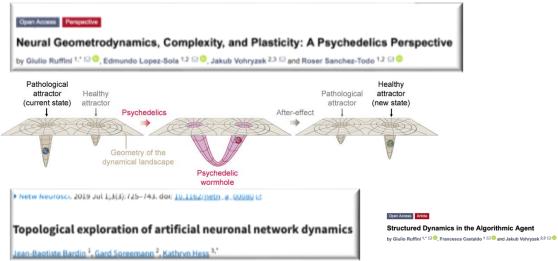

and

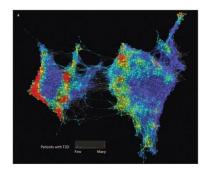
The Neural Correlates of Structured Experience

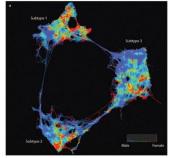


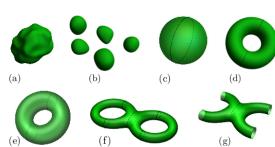
Tool 1: Computational Modeling, Criticality




Aim: Mechanistic interpretation of brain data using whole-brain computational models. The computational, critical brain as a requirement.




Tool 2: Topology, Group Theory



KT in practice #2

Computational
Psychiatry:
Where first-person and
third-person views
meet

The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder

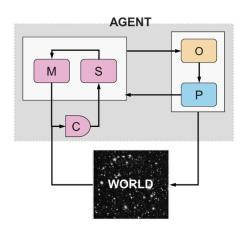
by Giulio Ruffini ¹.* ⊠ ⑥, Francesca Castaldo ¹.* ⊠ ⑥, Edmundo Lopez-Sola ¹.2 ⊠ ⑥, Roser Sanchez-Todo ¹.2 ⊠ ⑥ and Jakub Vohryzek ².3 ⊠

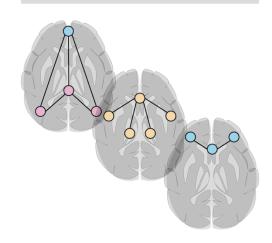
Computational psychiatry

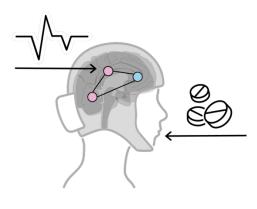
NE neuroelectrics®

Algorithmic Agent

Component and functions Structured valence MDD Agent Model

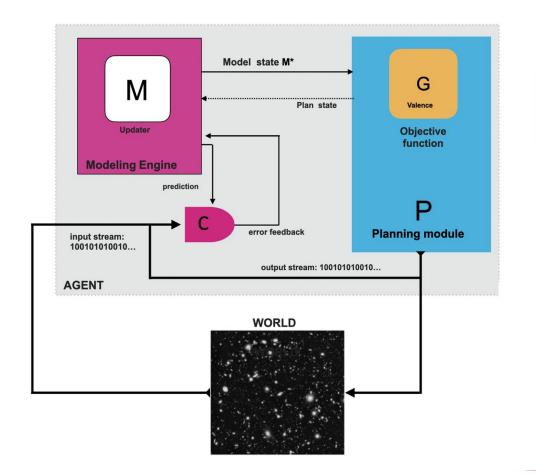

Translational Framework


Brain circuits
MDD biotypes
Dynamical landscape
Neurophenomenology

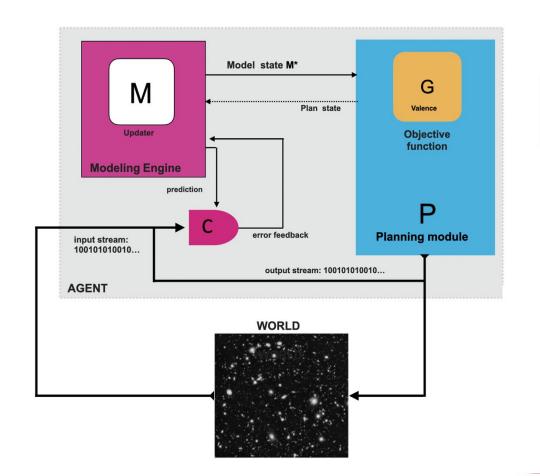


MDD Treatment

Psychedelics
Stimulation
Combined therapy
Computational neuropsychiatry

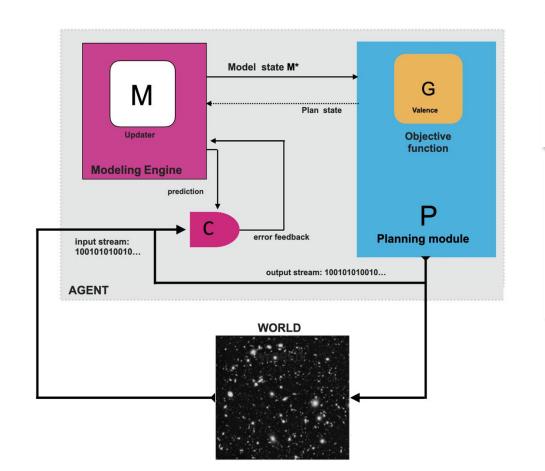


Agents have an **Objective Function** that sets their **goals**.


It quantifies how well or bad they are doing, the mathematical analog of **valence** (pleasure and pain).

The Agent: Model +

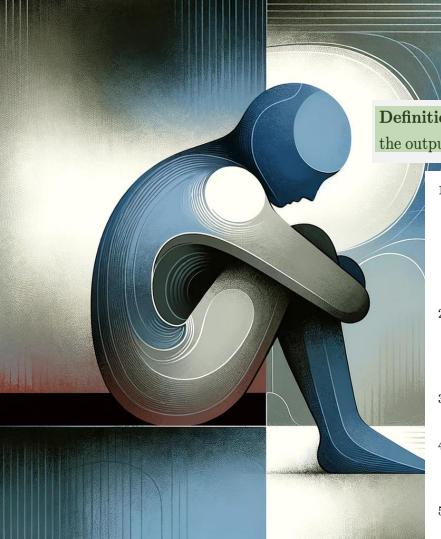
Goal + Planning



The Agent: Model + Goal + Planning

We are now in the position to define *emotion*:

Emotion = Model + Valence

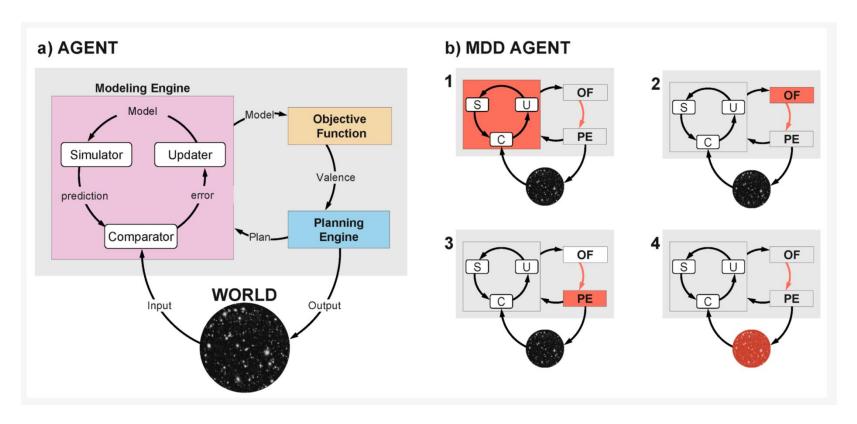


The Agent: Model + Goal + Planning

We are now in the position to define *emotion*:

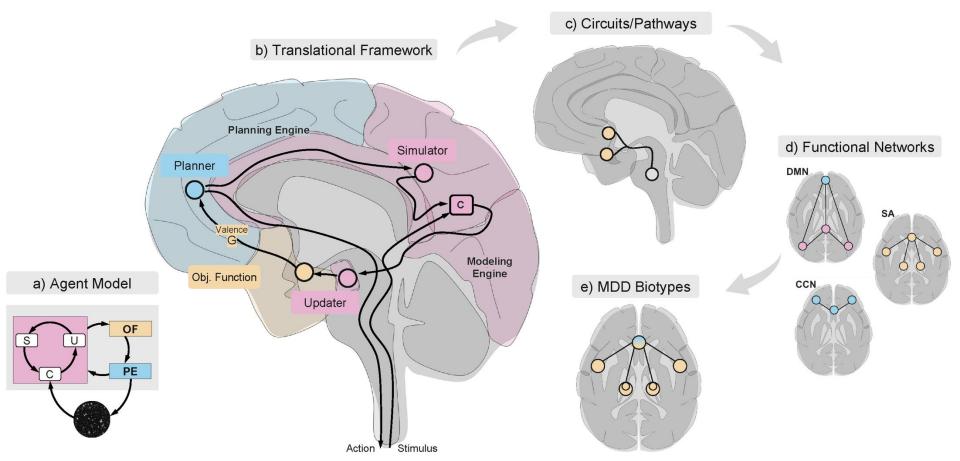
Emotion = Model + Valence

... and *depression*:
A pathological state of persistent low Valence

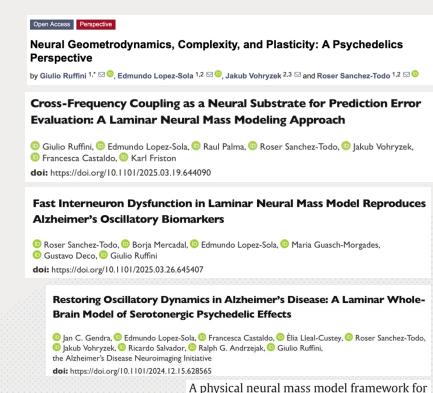

Multiple roads to a depressed agent

Definition 2.4 (Depressed Agent). Depression is a pathological state in which the output value of the objective function (valence) of an agent is persistently low.

- 1. The Modeling Engine: inaccurate world models due to a dysfunction of the update module (model building errors, dysfunctional plasticity, etc.), i.e., models that fail to match input data, thus leading to high prediction errors and low valence evaluation in the Objective function. Since model updating requires evaluating errors in the Comparator, Comparator dysfunction may also lead to inaccurate world models.
- 2. The Objective Function: dysfunctional objective function, i.e., persistently returning abnormally low valence regardless of the input data. The evaluation of valence in the Objective function is very complex and requires the Simulator, which may also be at fault.
- 3. **Simulator:** dysfunction in the simulator will affect the Modeling engine, Objective function, and Planning engine.
- 4. The Planning engine: inability to find plans to increase valence. This may, in fact, produce plans that impact the World with negative consequences for the agent and further decreases of valence.
- 5. The World: objectively hostile world conditions⁶, i.e., the agent receives input data consistent with genuine threats to its homeostasis.


Agent-types of depression

Depression: circuits and biotypes

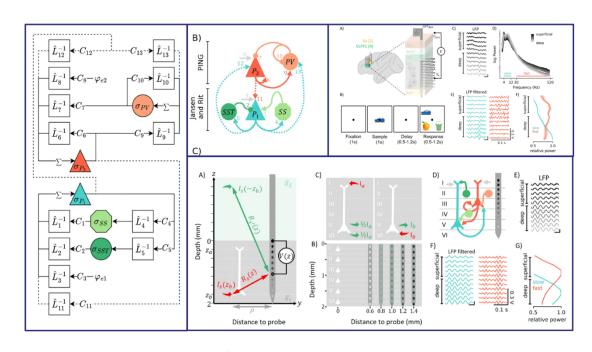


KT in practice #3

- Predictive processing theory / Active Inference (Friston)
- 2. Alzheimer's and Psychedelics
- 3. How do you connect a whole-brain model?

laminar electrophysiological recordings

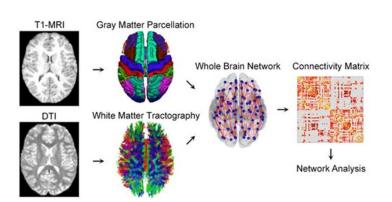
Roser Sanchez-Todo ^{of}, André M. Bastos ^b, Edmundo Lopez-Sola ^o, Borja Mercadal ^o,

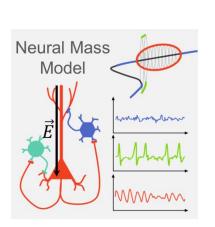

Emiliano Santarmecchi ^o, Earl K. Miller ^{of}, Gustavo Deco ^{of ph}, Giulio Ruffini ^{of h} ^o, S

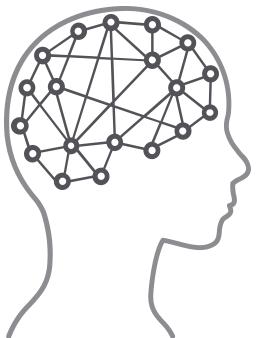
the analysis of oscillatory generators from

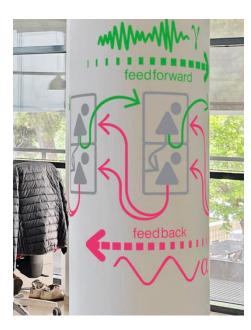
Neurotwin Technology

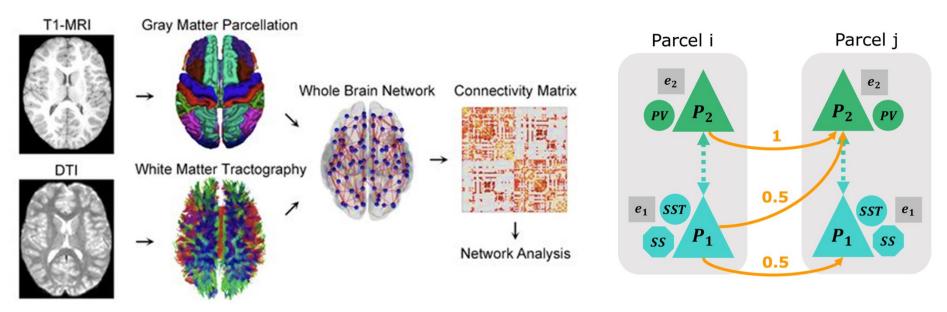
- Biophysical model of a cortical column with laminar (superficial/deep) structure.
- Integrates alpha (slow) and gamma (fast) oscillatory subnetworks.
- Merges Jansen-Rit (alpha) and PING (gamma) models.
- Includes deep/superficial pyramidal cells (P1/P2), inhibitory interneurons (PV), and excitatory stellate inputs.




A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings


Roser Sanchez-Todo ^{a f}, André M. Bastos ^b, Edmundo Lopez-Sola ^a, Borja Mercadal ^a, Emiliano Santarnecchi ^c, Earl K. Miller ^{d e}, Gustavo Deco ^{f g h j}, Giulio Ruffini ^{a j k} 久 図


How do you wire a Whole-brain Model?

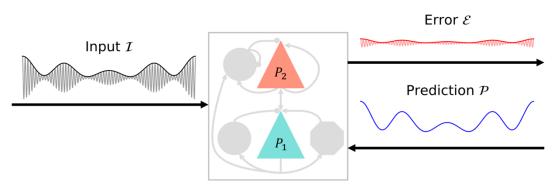
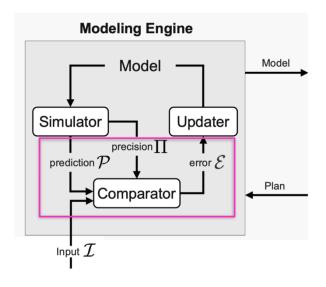
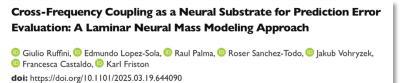


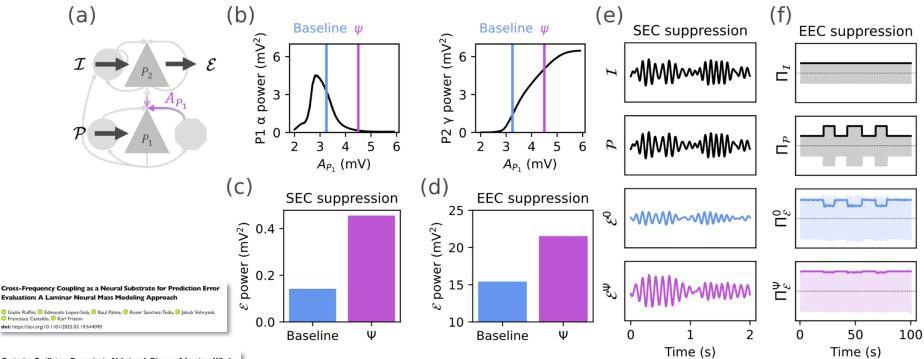
Undirected links? Where, precisely?

Gendra et al 2024

How do you connect the computational brain?

Comparator Mechanism (Concept)

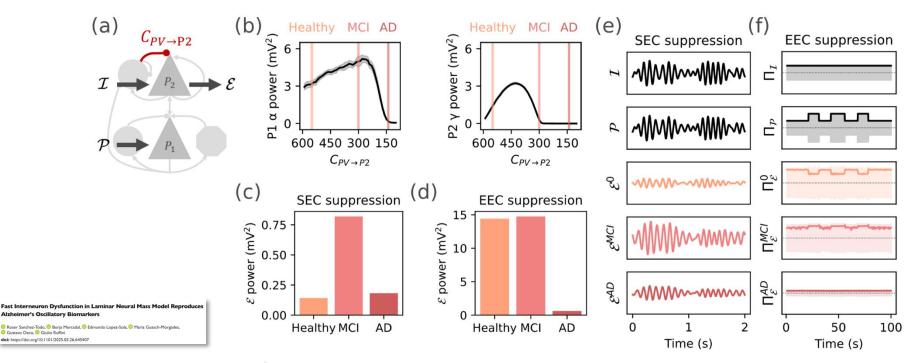

Figure: Conceptual diagram of the Comparator, illustrating how an input I(t) (fast signal + envelope) and a prediction P(t) (slow signal) combine to produce an error signal E(t), with precision signals as envelopes controlling gain

Effects of Psychedelics

Restoring Oscillatory Dynamics in Alzheimer's Disease: A Laminar Whole-Brain Model of Serotonergic Psychedelic Effects

⊙ Jan C. Gendra. ⊚ Edmundo Lopez-Sola. ⊚ Francesca Castaldo. ⊚ Élia Lleal-Custey. ⊚ Roser Sanchez-Todo, ⊙ Jakub Vohryzek. @ Ricardo Salvador, ⊙ Ralph G. Andrzejak. ⊚ Giulio Ruffini, the Alzheimer's Disease Neurolinging Initiative.

doi: https://doi.org/10.1101/2024.12.15.628565


The comparator on psychedelics

- Result: deep-layer α power was markedly reduced, and superficial γ power was elevated (disinhibition of fast activity).
- Even with a matching prediction, the error signal remained abnormally high the model failed to attenuate prediction errors under this hyper-excitable condition.
- Interpretation: Weakened top-down constraints (reduced precision of priors) lead to unfiltered bottom-up signals and excessive prediction errors. This aligns with the REBUS model of psychedelics: relaxed priors → an "anarchic" increase in error signals.

Comparator under PV dysfunctions perturbations (AD and others)

Cross-Frequency Coupling as a Neural Substrate for Prediction Error Evaluation: A Laminar Neural Mass Modeling Approach

© Giulio Ruffini, © Edmundo Lopez-Sola, © Raul Palma, © Roser Sanchez-Todo, © Jakub Vohryzek, ⊙ Francesca Castaldo, ⊙ Karl Friston

doi: https://doi.org/10.1101/2025.03.19.644090

Perturbation: PV interneuron dysfunction AD model)

- Moderate PV loss (early stage): gamma power increases and prediction error signals are amplified (hyper-excitable cortex with excessive surprise signals).
- Severe PV loss (late stage): gamma oscillations collapse into slow-wave dominance (hypoactive cortex), and error signals are greatly attenuated or absent.
- Interpretation: Early interneuron dysfunction causes exaggerated prediction errors (overestimating surprise), whereas advanced dysfunction leads to a breakdown of error signaling (failure to propagate errors).

Conclusions and Future Directions

'Agent' emerges PROVING DARWIN Making Biology Mathematical


The Algorithmic Weltanschauung

- There is Spirit/Experience and Mathematics
- Mathematics gives rise to an "algorithmic soup" of possibilities
- There are persistent patterns in the soup. Some we call Agents, driven by telehomeostasis.
- Each is the Observer
- Agents **coarse-grain** information to create **compressive models** (Emergence).
- This leads to subjective Valenced
 Structured Experience
- This is Observer's Reality

The Algorithmic Weltanschauung: Key Concepts

- Pure vs structured experience
- Mathematics (science of structure)
- Algorithms/computation
- Algorithmic Soup
- Kolmogorov Complexity and Mutual Algorithmic Information
- Persistent algorithmic patterns: Agents and telehomeostasis (life)
- Coarse-graining for Emergence (useful compression)
- Modeling, compression. Simplicity.
- Goals, Model structure + Valence => Emotion
- Reported vs. unreported experience => a crucial conceptual element

What people normally call consciousness is here "reported (to self or others) structured experience"

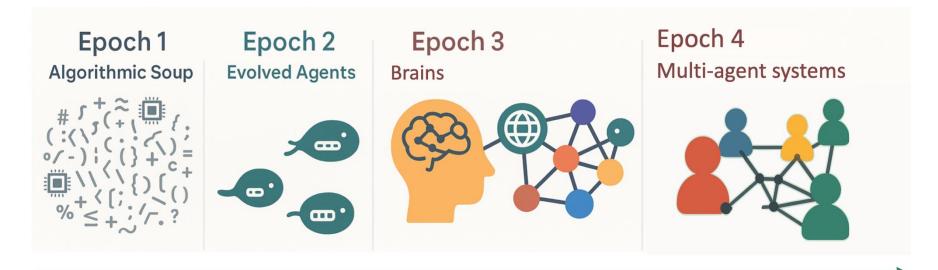
^{*} Lenia videoA credit https://www.youtube.com/watch?v=HT49wpyux-k

Future

Demonstrate how to **computationally evolve agents**.

KT conjecture: Under the right conditions, persistent patterns are unavoidable in a computational soup if we wait long enough.

Are there persistent patterns other than **agents**?


Devise methods to **detect** an **agent** through its behavior, inner dynamics or structure

Associate the structure of dynamical reduced manifolds with 1P and 3P data

Map the neurobiology of agenthood

The Algorithmic Weltanschauung

Iterations

Summary

- 1) We focused on the requirements for structured experience
- 2) Reality is a model, KT is well aligned with Idealism
- 3) Tracking the world requires computation to run models
- 4) This constrains brain structure and also collapses dynamics to reduced manifolds, the characteristics of which are good candidates for "neural correlates of structured experience (NCSE)"
- 5) Emotion is defined by combining structured experience (model structure) and Valence (Objective function)
- 6) This framework can guide computational neuroscience, bringing together 3P and 1P perspectives in neuropsychiatry

Thanks to my collaborators and the Neuroelectrics team, and to my EU funders (HIVE, Luminous, Neurotwin, Galvani, Luminous projects).

Special thanks to the EU FET program.

- Whole-brain Personalization Methods
- > Whole-brain Optimization methods
- Clinical study design and analysis

The project is investigating the impact weak electric fields have on the physiology of neurons and neural networks. The key objective is to understand if these electric pulses can improve the patient-specific epileptogenic network.

- Laminar Neural Mass Model
- Whole-brain Model
- Analysis Clinical Studies

The **aim** is to develop **advanced brain models** that characterize individual pathology and predict the physiological effects of **tES** and use them to design optimal **brain stimulation protocols** in Alzheimer's disease.

Special Issue

The Mathematics of Structured Experience: Exploring Dynamics, Topology, and Complexity in the Brain

Guest Editors

Dr. Giulio Ruffini

Dr. Johannes Kleiner

Dr. Ryota Kanai

Deadline

20 March 2026

Thank You

Dr. Giulio Ruffini Co-founder & CTO Starlab / Neuroelectrics

Barcelona, July 7, 2025 giulio.ruffini@neuroelectrics.com

Follow us @neuroelectrics

