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From Kolmogorov
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Modeling and Brain
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Tom, 5 years James, 10 years Susan, 25 years Earl, 69 years Linda, 81 years
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ADHD Epilepsy Depression Parkinson’s disease Alzheimer’s disease
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Physics and the big questions N e

What is mass, space, time?
What is, indeed, Reality?
Why is math so powerful?
And who is this famous

Observer? Who am Al?




The Electric Brain NE e

The brain appears to compute electrically. What do electric field
patterns have to do with mind?
Can we harness them for communication or therapy?



Write tES Easy-to-use, non-invasive, portable
device for monitoring and treatment
of the brain diseases at home




How do you stimulate a brain?

The brainis a
plastic network, a
large dynamical

system



A Solid Foundation with Robust Modeling Qulé@ecm@

Leveraging expertise across mathematics, physics, and neuroscience, unique models
can be developed to provide novel insights
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Dynamical brain network models can be used The physical interaction between the brain
to simulate brain activity for each patient and the world (measurements or brain
stimulation) requires a physical layer.
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Neuroelectrics®
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COMPLETE NEUROTWIN

Complete digital twin of the brain of a patient ready
for optimization of stimulation protocol or analysis



Mechanism of Action Transcranial Electrical Stimulation (tES) !ngdem%@

Galan et al 2023
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Mechanism of Action

Introduction of current generates electric
fieldin the brain

Electric field couples with neurons,
altering their membrane potential

Modulates neuronal firing patterns
— heightening/reducing excitability or
entraining oscillations

Leads to synaptic remodeling
— “rewiring” the brain

Magnitude of Stimulation

Low electrical current injected non-invasively
through the scalp (< 4mA)

Acute and long-lasting effects, depending on the
intensity, montage and duration
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J Physiol 2000 Sep 15; 527(Pt 3): 633-639. PMCID: PMC2270089
doi. 10.1111/).1469-7793 2000 101-1-00633 x PMID. 109903547

Excitability changes induced in the human motor cortex by weak transcranial direct
current stimulation

M A Nitsche and W Paulus

Review > Nat Neurosci. 2018 Feb;21(2):174-187. doi: 10.1038/541593-017-0054-4.
Epub 2018 Jan 8.

Studying and modifying brain function with non-
invasive brain stimulation

Rafael Polania T, Michael A Nitsche 2 3, Christian C Ruff 4

Review > Clin Neurophysiol. 2016 Feb;127(2):1031-1048. doi: 10.1016/j.clinph.2015.

Epub 2015 Nov 22

A technical guide to tDCS, and related non-invasive
brain stimulation tools

> Brain Stimul. 2020 Mar-Apr;13(2):287-301. doi: 10.1016/j.brs.2019.10.014. Epub 2019 Oct 18.

Direct current stimulation boosts hebbian plasticity
in vitro

Greg Kronberg !, Asif Rahman 2, Mahima Sharma 2, Marom Bikson 2, Lucas C Parra 2

Review > Neurophysiol Clin. 2016 Dec;46(6):319-398. doi: 10.1016/j.neucli.2016.10.002.
Epub 2016 Nov 17.
A comprehensive database of published tDCS clinical
trials (2005-2016)

Jean-Pascal Lefaucheur !



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270099/
https://pubmed.ncbi.nlm.nih.gov/29311747/
https://pubmed.ncbi.nlm.nih.gov/26652115/
https://pubmed.ncbi.nlm.nih.gov/31668982/
https://pubmed.ncbi.nlm.nih.gov/27865707/

Epilepsy
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neuroelectrics®
Boston - : HARVARD NGRS TR
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Dr. Alexander Rotenberg

Hospital

Until every child is well

Beth Israel Deaconess

Medical Center _/ Breakthrough Designation
LFoA






REDUCING SEIZURES BY 47%

Patient 1 .
Patient 2 IIIIIII'
Patient3 |
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Personalized, Multisession, Multichannel Transcranial Direct
Current Stimulation in Medication-Refractory Focal Epilepsy:
An Open-Label Study

Kaye, Harper Lee""*; San-Juan, Daniel%; Salvador, Ricardo®; Biagi, Maria Chiara"; Dubreuil-vall, Laura¥; Damar, Ugur™';
Pascual-Leone, Alvaro™’; Ruffini, Giulio"; Shafi, Mouhsin M."; Rotenberg, Alexander"""

Author Information @

Journal of Clinical Neurophysiology 40(1):p 53-62, January 2023. | DOI: 101097/ WNP.0000000000000838

seizure reduction g



NeurOtWinS In Epilepsy QJ§91QCJ[F1€5®

A I M Compartment

Model

1. Develop advanced individualized whole-brain models that
predict the physiological effects of tES
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2. Use them to design optimal stimulation protocols in the
context of neuropsychiatric disorders

[oPOI UleIg PUGAH

T
S|opon
|eaibojoisAyd

sjopoly
ensqy

M

L I L 11 1
T T T

Microscopic Mesoscopic Macroscopic
Scale Scale Scale

Neurotwin: Mathematical model of the human brain
comprising either or both physical and physiological
aspects in the context of a disorder for the purpose
of optimizing therapy.




NeurOtWin TeChnOIOgy QJEQQCJ[H'CS@

PET Y\A/\.
2 ,_\y.v/(’ Physiology.
?’MQVN”"V\), R Model
W
EEG
dMRI Whole-Brai ST o Biophysical
:Az;rlaln Optimization Montage Optimization Head Model MRI
sMRI
Biophysical
Head Model
PREDICTING FIELDS ON THE BRAIN
WHOLE-BRAIN MODELS We can predict the electric field in the cortex
Whole Brain Models represent cortical dynamics Th erapy using biophysical head models that represent

by simulating the collective activity of neuron the brain geometry, and its passive electrical
populations. properties based on neuroimaging structural
data.
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Whole-brain Personalization Methods
Whole-brain Optimization methods

Clinical study design and analysis

The project is investigating the impact weak
electric fields have on the physiology of

neurons and neural networks. The key objective

is to understand if these electric pulses can
improve the patient-specific epileptogenic
network.

Funded by
the European Union

Multicenter Clinical Epilepsy
Sept 2024-27

Neurotwins for advanced
tDCS in focal epilepsy

neuroelectrics®
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Major Depressive Disorder (MDD)

Anterior
cingulate cortex

Striatum
Prefrontal

cortex

./’/Thalamus
Hypothalamus |

f Hippocampus
Amygdala/A PP P

neurotransmitter
centers

In MDD, some areas of the brain are
Hypoactive and others are Hyperactive

neuroelectrics®

Target indication: refractory MDD
* >28M patients globally
* Therapeutic alternatives include TMS, VNS, ECT

Mechanistic rationale
* MDD is characterized by reduced left vs right neuronal
activity in the dorsolateral prefrontal cortex (DLPFC)

* Application of tDCS on left DLPFC stimulates neuronal
activity in this region, restoring electrophysiological function

* Plasticity from repeated application is to lead to healthy
rewiring of frontolimbic network

Clinical evidence
* >20 RCTs conducted to date; >1,000 patients studied

* LeFaucheur (2017) meta-analyses supports Level B
recommendation — probable efficacy — for anodal TES of
the left DLPFC in MDD patients with drug resistance



MDD Open Label Pilot Study Results

Montages, biotypes and etiology matter neuroelectrics®

Optimized HD-tDCS protocol for clinical use in patients with major
depressive disorder

Neuroelectrics Home pilot MDD11

Mohammad Ali Salehinejad, Marzieh Abdi, Mohsen Dadashi, Reza Rostami, Ricardo Salvador, Giulio
Ruffini, Michael A. Nitsche

Protocol:

F8: -623
FC5: -978
FC6: 1650

PRIMARY ENDPOINT: MADRS
( (gold standard depression severity assessment) )

Total injected current (uA): 3997
Maximum current any electrode (uA): 1650

Results - MADRS
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Montgomery-Asberg Depression Rating Scale
®

0 127
Baseline Week 4 Week 8 4-week post treatment
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» Avg Baseline: 30.1 (ITT) 0 T = X T T T
» Avg Improvement @ Week 4 Post-treat: 19.8 pts & & & & o“'& &’
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Can we do better?

What is Depression?

MDD is not a single condition.
Etiology is diverse.

MDD is characterized by a
persistent first-person experience
of sadness, hopelessness, and a
lack of interest or pleasure in
activities.

neuroelectrics®



neuroelectrics®

Neurology is primarily
concerned with the physical and
structural aspects of the
nervous system and its
diseases.

Psychiatry focuses on the
mental, emotional, and
behavioral aspects of well-
being.

The experience machine!



How can this experience?




The Challenge NE e

We are missing a principled, unifying
framework to define and operationalize
what we want to model and understand

what its physiological signatures are — how
to measure it.



Defining Experience/Consciousness NE e

1. A brief intro to Kolmogorov theory (KT)

2. Emotion, depression, and the role of valence



KO I m O g O rOV T h eO ry ( KT gee:lsr:‘leg?‘;metrodynamics, Complexity, and Plasticity: A Psychedelics

by Giulio Ruffini 1" & ¥, Edmundo Lopez-Sola 2 82, Jakub Vohryzek 2.3 & and Roser Sanchez-Todo 12 &

d r_(lV > physics > arXiv:0704.1147

Physics > General Physics

[Submitted on 8 Apr 2007]

The Algorithmic Agent Perspective and Computational Neuropsychiatry: From

Information, complexity, brains and reality (Kolmogorov Manifesto) Etiology to Advanced Therapy in Major Depressive Disorder

. by Giulio Ruffini ." &2 Francesca C Ido 1." &2 do Lopez-Sola 12 & & Roser Sanchez-Todo 12 & © and
dar \ \/ > physics > arXiv:0903.1193 Jakub Vohryzek 23 &

Giulio Ruffini

Physics > General Physics

a I‘“\lV > ¢s > arXiv:1612.05627

Reality as Simplicity

Computer Science > Machine Learning . )
Giulio Ruffini

[Submitted on 13 Dec 2016]
Models, networks and algorithmic complexity

Giulio Ruffini
An algorithmic information theory of consciousness []
Giulio Ruffini

Neuroscience of Consciousness, Volume 2017, Issue 1, 2017, nix019,

Journal of Artificial Intelligence and Consciousness | Vol. 09, No. 02, pp. 153-191 (2022)
AIT Foundations of Structured Experience

Giulio Ruffini & and Edmundo Lopez-Sola

Structured Dynamics in the Algorithmic Agent

by Giulio Ruffini 1" 8 Francesca Castaldo 1 &© and Jakub Vohryzek 2.3 &

Navigating Complexity: How Resource-Limited
Agents Derive Probability and Generate Emergence

ISubmitted on 6 Mar 2009 41}, st revised 19 Jun 2008 (his version, v3)] Cross-Frequency Coupling as a Neural Substrate for Prediction Error

Evaluation: A Laminar Neural Mass Modeling Approach

Giulio Ruffini, =) Edmundo Lopez-Sola, (=% Raul Palma, (= Roser Sanchez-Todo, = Jakub Vohryzek,
Francesca Castaldo, (2 Karl Friston

doi: https://doi.org/10.1101/2025.03.19.644090

Restoring Oscillatory Dynamics in Alzheimer’s Disease: A Laminar Whole-

A physical neural mass model framework for
Brain Model of Serotonergic Psychedelic Effects

the analysis of oscillatory generators from
Jan C. Gendra,  Edmundo Lopez-Sola, () Francesca Castaldo, () Elia Lleal-Custey, & Roser Sanchez-Todo, laminar EIQCUOP hysmloglcal recordmgs

Jakub Vohryzek, {2 Ricardo Salvador, {2 Ralph G. Andrzejak, =) Giulio Ruffini, Roser SanchezTodo ', André M. Bostos ¥, Edmundo Lopez-Sola %, Borjo Mercadol %,
the Alzheimer's Disease Neuroimaging Initiative Emiliono Santarnecchi ©, Earl K. Miller 4°, Gustavo Deco '8 " |, Giulio Ruffini ®/* 2 &

doi: https://doi.org/10.1101/2024.12.15.628565

LSD-induced increase of Ising temperature and algorithmic
complexity of brain dynamics

Giulio Ruffini [E), Giada Damiani, Diego Lozano-Soldevilla, Nikolas Deco, Fernando E. Rosas, Narsis A. Kiani,
Adrian Ponce-Alvarez, Morten L. Kringelbach, Robin Carhart-Harris, Gustavo Deco

Fast Interneuron Dysfunction in Laminar Neural Mass Model Reproduces
Alzheimer’s Oscillatory Biomarkers

Roser Sanchez-Todo, '2) Borja Mercadal, *= Edmundo Lopez-Sola, '=) Maria Guasch-Morgades,
Gustavo Deco, (& Giulio Ruffini

doi: https://doi.org/10.1101/2025.03.26.645407

Giulio Ruffini*
Neuroelectrics
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Kolmogorov
Theory of
Consciousness

1. Postulate: There is
Experience

2. Focus on Structured
Experience



There is Pure Experience

The immediate, subjective sense of “what
it feels like” to be oneself at any given
moment.

What is it like to be you?

What is it liketo be a
bat? (Thomas Nagel
1974)




Excitations in the Experience Field




What is structured
experience?

The spatial,
temporal, and
conceptual
organization of our
first-person

experience of the
world and of
ourselves as agents
init.

An algorithmic information theory of
consciousness
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Coarse-

grained

modeling,
lossy

compression
to extract

useful

structure
Kolmogorov

Complexity is the limit!
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neuroelectrics®

KT in a Nutshell

Ask what creates structured
experience in an algorithmic context

A. Evolution gives rise to agents
(and we are agents)

B. Agents run models of the world
and enjoy structured experience!

C. Agents have goals. This gives
origin to valence & emotions
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What is an algorithmic
agent?

A computational system
that interacts effectively
with its environment by
planning actions using
compressive predictive
models to maximize an
objective function.

Using a model entails
computation and dynamics.



AGENT

Modeling Engine
Compression

Model — Model | Objective
Structure, symmetry - Function
Simulator Updater
Valence
prediction error

Engine
World Tracking
constraints |
Coarse Compositional
graining Actions
WORLD
Structured, compositional
Input data, symmetry Output

The Algorithmic Agent Perspective and Comp
Etiology to Advanced Therapy in Major Depressive Disorder

by Giulio Ruffini 1" & @, Francesca Castaldo 1" & @, Edmundo Lopez-Sola 12 &2 @, Roser Sanchez-Todo 12 & @ and
Jakub Vohryzek 23 &2

psychiatry: From
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What is a model?
X wd =

A y :
v)[(,’( Zoy ~a5* ( * A program that allows you
T=C9 ). to compress coarse-grained
‘ information

* A simplified but useful
representation of reality

A mathematical object




neuroelectrics®

A model is computation and
dynamics.

The brain computes?*, it is a
dynamical system.

Dynamics is mathematics
and geometry.

* Classical or Quantum. Quantum #
Hypercomputation. Does not compute “new”
things.



Structured Experience



How do we define model structure? N e

Formalize model using group theory, capturing the idea of simplicity as

symmetry. Then, we can show that

1) Tracking the world forces the agent as a dynamical system to mirror the
symmetry in the data. Dynamics collapses to reduced manifolds.

2) The hierarchical nature of world data leads to coarse-graining and the
notion of hierarchical constraints and manifolds

Structured Dynamics in the Algorithmic Agent

by Giulio Ruffini 1." &2, Francesca Castaldo 1 &2 and Jakub Vohryzek 2.3 &




The central hypothesis in KT N e

An agent has structured experience (S) to the
extent it has access to encompassing and

compressive models to interact with the world.

Algorithm
More specifically, the event of structured
experience arises in the act of running models.
Model structure determines the structure of
experience.
Successful comparison with data leads to wakeful Experience Dynamics
pre sence. Phenomenology @

Much structured experience may be unreported!



KT in practice #1

Requirements for
structured experience

and

The Neural Correlates of
Structured Experience



Tool 1: Computational Modeling, Criticality méemm@

Compartment

Aim: Mechanistic interpretation of
brain data using whole-brain
computational models. The
computational, critical brain as a
requirement.
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Tool 2: Topology, Group Theory

MANIFOLD HYPOTHESIS

O e
Neural Geometrodynamics, Complexity, and Plasticity: A Pasychedelics Parspective
b i ' Edmiursdo Lopaz-Sols 1 Jamub Yoy pek and Aossr Sancher-Todo !
Pathological
attractor Healthy Pathological
(current state)  attractor attractor
| Psychedelics After-effect !
; =Sh 4 S~ CCBES Y >
] \
3
v S
Psychedelic
wormhole
¥ beelw bewiaiis JOLE Sul Loddd) 725 T4 4, doi: LU disy |

Topological exploration of artificial neuronal network dynamics

Baglisie Bagdin - Card Sprgamann - Kaihren H

neuroelectrics®

Healthy
attractor
(new state)

|

E=r=]
Structured Dynamics in the Algorithmic Agent

ancesca Castaldo 1 =@ and Jakub Vohryzek 3 &
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KT in practice #2

Computational
Psychiatry:
Where first-person and

third-person views
meet

The Algorithmic Agent Perspective and Computational Neuropsychiatry: From |
Etiology to Advanced Therapy in Major Depressive Disorder

by Giulio Ruffini 1. & © Francesca Castaldo 1" &%, Edmundo Lopez-Sola 1.2 &, Roser Sanchez-Todo 1.2 & & and :
ub Vohryzek 2.3 &




Computational psychiatry

Algorithmic Translational MDD
Agent Framework Treatment
Component and functions Brain circuits Psychedglics
SE[)ructured valence MDD biotypes Stimulation
MDD Agent Model Dynamical landscape Combined therapy
g Neurophenomenology Computational neuropsychiatry
AGENT
a1 v
M s Ve
: 7 o




Agents have an
Objective Function
that sets their goals.

It quantifies how well
or bad they are doing,
the mathematical
analog of valence
(pleasure and pain).




neuroelectrics®
Model state M*

The Agent: Model +
+ Planning

Plan state

prediction
input stream: .= .medback
100101010010...
output stream: 100101010010...
AGENT

WORLD




Model state M*

prediction

>
input stream: error feedback

100101010010...

Plan state

output stream: 100101010010...

neuroelectrics®

The Agent: Model +
+ Planning

AGENT

WORLD

We are now in the position
to define emotion:

Emotion = Model +




neuroelectrics®
Model state M*

The Agent: Model +
+ Planning

Plan state

We are now in the position
to define emotion:

prediction

>
input stream: error feedback

100101010010...

output stream: 100101010010...

AGENT Emotion = Model +

WORLD

... and depression:
A pathological state of
- persistent low




Multiple roads to a
depressed agent

()

|

Definition 2.4 (Depressed Agent). Depression is a pathological state in which

the output value of the objective function (valence) of an agent is persistently low.
[ — ]

. The Modeling Engine: inaccurate world models due to a dysfunction of the
update module (model building errors, dysfunctional plasticity, etc.), i.e., models
that fail to match input data, thus leading to high prediction errors and low valence
evaluation in the Objective function. Since model updating requires evaluating
errors in the Comparator, Comparator dysfunction may also lead to inaccurate
world models.

. The Objective Function: dysfunctional objective function, i.e., persistently
returning abnormally low valence regardless of the input data. The evaluation
of valence in the Objective function is very complex and requires the Simulator,
which may also be at fault.

. Simulator: dysfunction in the simulator will affect the Modeling engine, Objective
function, and Planning engine.

. The Planning engine: inability to find plans to increase valence. This may,
in fact, produce plans that impact the World with negative consequences for the
agent and further decreases of valence.

. The World: objectively hostile world conditions®, i.e., the agent receives input

data consistent with genuine threats to its homeostasis.



Agent-types of depression

a) AGENT

Modeling Engine
Model
ode Model™  opjective
Function

[Simulator] [ Updater ]

‘ f Valence
prediction error
Planning
N Plan— Engine
\ WORLD

Output

b) MDD AGENT
1

NE

neuroelectrics

Ruffini, Castaldo et al 2024, Entropy



Depression: circuits and biotypes

(I"1CS
c) Circuits/Pathways
b) Translational Framework
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neuroelectrics

KT in practice #3

Predictive processing theory /
Active Inference (Friston)

Alzheimer's and Psychedelics

How do you connect a whole-brain

model?

Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics
Perspective

by Giulio Ruffini 1" & ©, Edmundo Lopez-Sola 12 ¥, Jakub Vohryzek 23 & and Roser Sanchez-Todo 1.2 &

Cross-Frequency Coupling as a Neural Substrate for Prediction Error
Evaluation: A Laminar Neural Mass Modeling Approach

Giulio Ruffini, 1=} Edmundo Lopez-Sola, (= Raul Palma, {2 Roser Sanchez-Todo, () Jakub Vohryzek,
Francesca Castaldo, {2 Karl Friston

doi: htps://doi.org/10.1101/2025.03.19.644090

Fast Interneuron Dysfunction in Laminar Neural Mass Model Reproduces
Alzheimer’s Oscillatory Biomarkers

Roser Sanchez-Todo, ) Borja Mercadal, “) Edmundo Lopez-Sola, i) Maria Guasch-Morgades,
Gustavo Deco, ¥ Giulio Ruffini

doi: hrtps://doi.org/10.1101/2025.03.26.645407

Restoring Oscillatory Dynamics in Alzheimer’s Disease: A Laminar Whole-
Brain Model of Serotonergic Psychedelic Effects

Jan C. Gendra, & Edmundo Lopez-Sola, & Francesca Castaldo, (& Elia Lleal-Custey, & Roser Sanchez-Todo,
Jakub Vohryzek, {2 Ricardo Salvador, {2 Ralph G. Andrzejak, {2} Giulio Ruffini,
the Alzheimer’s Disease Neuroimaging Initiative

doi: https://doi.org/10.1101/2024.12.15.628565
A physical neural mass model framework for
the analysis of oscillatory generators from
laminar electrophysiological recordings

Roser Sanchez-Todo ® ", André M. Bastos *, Edmundo Lopez-Sola , Borja Mercadal ®,
Emiliano Santarnecchi ¢, Earl K. Miller ¢ ¢, Gustavo Deco F9 7, Giulio Ruffini ® 1% &




Neurotwin Technology

Biophysical model of a
cortical column with
laminar

(superficial /deep)
structure.

Integrates alpha (slow)
and gamma (fast)
oscillatory subnetworks.

Merges Jansen-Rit
(alpha) and PING
(gamma) models.

Includes deep/superficial
pyramidal cells (P1/P2),
inhibitory interneurons
(PV), and excitatory
stellate inputs.

neuroelectrics®
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A physical neural mass model framework for
the analysis of oscillatory generators from
laminar electrophysiological recordings

Roser Sanchez-Todo ', André M. Bastos °, Edmundo Lopez-Sola °, Barja Mercadal °,
Emiliano Santarnecchi %, Earl K. Miller 4%, Gustovo Deco '8 " |, Giulio Ruffini ®/* 2 &




How do you wire a Whole-brain Model? Nt

Gray Matter Parcellation

= Whole Brain Network  Connectivity Matrix
A T
PR B
= cw e Se - &
5
Network Analysis
”
Neural Mass T
Model il
/4
= A e Nyrenrr




Undirected links? Where, precisely? N e

T1-MRI Gray Matter Parcellation

Parcel i Parcel j

Whole Brain Network  Connectivity Matrix

White Matter Tractography 8% Sl
\ b .ill.!l"-:.-i
7 i

Network Analysis

Gendra et al 2024



How do you connect the computational brain? I%Jlr';@em?

Comparator Mechanism (Concept)

Modeling Engine
Error &€
— Model
Input 1 T AT eeererereremeeeer TP} Model
P, . v
R Prediction » [Simulator]—l Updater
\/\/\/\/ | precision | | T
prediction P error £
P1 <
PI
> Comparator =
Figure: Conceptual diagram of the Comparator, illustrating how an input I(¢) (fast signal +

envelope) and a prediction P(t) (slow signal) combine to produce an error signal E(t), with input .
precision signals as envelopes controlling gain |

Cross-Frequency Coupling as a Neural Substrate for Prediction Error
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Effects of Psychedelics

(a)

2

I=pf=> ¢

—

’P»pl

—
(@)
N—

Cross-Frequency Coupling as a Neural Substrate for Prediction Error
Evaluation: A Laminar Neural Mass Modeling Approach

) Raul Palma, © Roser Sanchez-Todo, (3 Jakub Vohryzek,

doi: hups:iidoi wounuzozsnswmova

y in 'S
Brain Model of Serotonergic Psychedelic Effects

D Jan C. Gendra, Edm indo Lopez- Sol  Francesca Ca: xuldo Ela Lleal C ustey, D Roser Sanchez-Todo,

J]kauhryxk Ricardo Salvador. Rz!thAdn,k Giul
the Alzheimer's Disease Neurolmaging Iniciative

dot: hutpsi/doi.org/10.1101/2024.12.15.628565

Baseline y

0 1 1 I 1 U
2 3 4 5 6

Ap, (MV)

P1 a power (mV?2)

SEC suppression

o
~
1

£ power (mV?2)
o
)

©
o
L

Baseline Y

A Laminar Whole-

Baseline y

(e)

SEC suppression

J//

P2 y power (mV?)

2 3 4 5 6
Ap, (MV)

EEC suppression

N
o
1

£ power (mV?) o
N—
G N

=
o
1

Baseline y

A

A

Time (s)

neuroelectrics®

()

EEC suppression

~
=
—nrirn
R
=
e e "W W
(=1
=
EAY)
=
0 50 100

Time (s)



The comparator on psychedelics N e

m Result: deep-layer a power was markedly reduced, and superficial v power was
elevated (disinhibition of fast activity).

m Even with a matching prediction, the error signal remained abnormally high — the
model failed to attenuate prediction errors under this hyper-excitable condition.

m Interpretation: Weakened top-down constraints (reduced precision of priors)
lead to unfiltered bottom-up signals and excessive prediction errors. This aligns
with the REBUS model of psychedelics: relaxed priors — an “anarchic”
increase in error signals.
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Perturbation: PV interneuron dysfunction |
AD mOdel) neuroelectrics®

m Moderate PV loss (early stage): gamma power increases and prediction
error signals are amplified (hyper-excitable cortex with excessive surprise signals).

m Severe PV loss (late stage): gamma oscillations collapse into slow-wave
dominance (hypoactive cortex), and error signals are greatly attenuated or
absent.

m Interpretation: Early interneuron dysfunction causes exaggerated prediction
errors (overestimating surprise), whereas advanced dysfunction leads to a
breakdown of error signaling (failure to propagate errors).
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‘Agent’ emerges

PROVING DARWIN
Making Biology
1lematical ) ’
GREGORY CHAITIN e
0 ‘

The Algorithmic NE
Weltanschauung

neuroeiectrics

There is Spirit/Experience and
Mathematics

Mathematics gives rise to an
"algorithmic soup” of possibilities
There are persistent patterns in the
soup. Some we call Agents, driven by
telehomeostasis.

Each is the Observer

Agents coarse-grain information to
create compressive models
(Emergence).

This leads to subjective Valenced
Structured Experience

This is Observer’s Reality



The Algorithmic Weltanschauung: Key Concepts I\E

» Pure vs structured experience

« Mathematics (science of structure)

« Algorithms/computation

« Algorithmic Soup

« Kolmogorov Complexity and Mutual Algorithmic
Information

» Persistent algorithmic patterns: Agents and
telehomeostasis (life)

« Coarse-graining for Emergence (useful
compression)

« Modeling, compression. Simplicity.

« Goals, Model structure + Valence => Emotion

* Reported vs. unreported experience => a crucial
conceptual element

What people normally call consciousness is here ‘reported
(to self or others) structured experience”

* Lenia videoA credit https.//www.youtube.com/watch?v=HT49wpyux-k


https://www.youtube.com/watch?v=HT49wpyux-k
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Demonstrate how to computationally evolve agents.

KT conjecture: Under the right conditions, persistent patterns are
unavoidable in a computational soup if we wait long enough.

Are there persistent patterns other than agents?

Devise methods to detect an agent through its behavior, inner dynamics or
structure

Associate the structure of dynamical reduced manifolds with 1P and 3P data

Map the neurobiology of agenthood



The Algorithmic Weltanschauung N e

Epoch1 Epoch 2 Epoch3 Epoch 4
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1) We focused on the requirements for structured experience

2) Reality is a model, KT is well aligned with Idealism

3) Tracking the world requires computation to run models

4) This constrains brain structure and also collapses dynamics to reduced
manifolds, the characteristics of which are good candidates for “neural
correlates of structured experience (NCSE)”

5) Emotion is defined by combining structured experience (model structure) and
Valence (Objective function)

6) This framework can guide computational neuroscience, bringing together 3P

and 1P perspectives in neuropsychiatry
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> Whole-brain Personalization Methods > Laminar Neural Mass Model
> Whole-brain Optimization methods > Whole-brain Model
> Clinical study design and analysis > Analysis Clinical Studies
The project is investigating the impact weak The aimis to develop advanced brain models that
electric fields have on the physiology of characterize individual pathology and predict the
neurons and neural networks. The key objective physiological effects of tES and use them to design
is to understand if these electric pulses can optimal brain stimulation protocols in Alzheimer's
improve the patient-specific epileptogenic disease.
network.
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