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Overview

Goal: To illustrate the importance of simplicity in various
fields. To pose the question “why simplicity?”, and some
hints.

Cognition from Information

. A detour on computation: some questions
Simplicity

. Why is simplicity important?
Fundamental neuroscience

. The organism as a computer

Conclusions
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Cognition from information

e Overview:

» Brains (later organisms) receive information from the
environment (via sensors), process it and transmit some
information out to effectors (e.g., our hands) to control
sensorial systems and to “act” on the environment
thorough our bodies or BCls.

» Brains are computers. Information comes in, information
goes out. Both are very important!

» NB: the environment here includes the body, but some
computation carried out by our bodies as well

» What we call “reality” is a mental construct, a model.
Simplicity is part of our modeling strategy
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A Lion

10010100101011

10011001010101




Starlab

HEIMIEER

1.Human experience is generated in the brain
2 .All the brain has access to is information

This would clearly apply to the CPU in a robot.
Robot body parts are part of the environment to
model (self-model)
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How extreme is this view?

e Information is the fundamental
concept in physics today. From
atoms, to quanta, to bits?

e States and dynamics:
iInformation and computation

e ‘It from bit” (John Wheeler).

nformation as the ultimate

ouilding block. As far as we environment
Know, this is it. %

e The Presence gedanken: ideal
VR experiment shows all that
IS needed Is bits




Flying spaghetti monster
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Models = Algorithms

e A model is a data compressor
e A model is a data predictor

e A model uses physical resources: infrastructure,
energy, time

e Recursive computable functions a paradigm of
models: algorithms. Turing machines.

e Warning 1: a computer is needed!
e Warning 2: time is need!
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Examples of models

AUTOMATA
e Conservation of mass

e Conservation of charge
e Tigers

e People

e Newton’s laws

e Quantum physics

e IiIme

e Your body

e YOU

High algorithmic mutual
information with Environment
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Models at work: predictive coding

a
P Model state: M

\ /
Model
Hﬁ
data in: 100101010010101001 Error out: 00000000000000001
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Computation = dynamics

e Computation= a set of states+ dynamics
e Classical, quantum, Turing ... all based on these

Billiard-ball model of AND gate 4
based on « Conservative Logic, Fredkin, Toffoli

Turing machine
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Inference machines (2008)

Physical limits of inference

David H. Wolpert
MS 269-1, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

I show that physical devices that perform observation, prediction, or recollection share an underlying math-
ematical structure. I call devices with that structure “inference devices”. I present a set of existence and
impossibility results concerning inference devices. These results hold independent of the precise physical
laws governing our universe. In a limited sense, the impossibility results establish that Laplace was wrong
to claim that even in a classical, non-chaotic universe the future can be unerringly predicted, given sufficient
knowledge of the present. Alternatively, these impossibility results can be viewed as a non-quantum me-
chanical “uncertainty principle”. Next [ explore the close connections between the mathematics of inference
devices and of Turing Machines. In particular, the impossibility results for inference devices are similar to
the Halting theorem for TM'’s. Furthermore, one can define an analog of Universal TM's (UTM’s) for in-
ference devices. I call those analogs “strong inference devices". [ use strong inference devices to define the
“inference complexity” of an inference task, which is the analog of the Kolmogorov complexity of com-
puting a string. However no universe can contain more than one strong inference device. So whereas the
Kolmogorov complexity of a string is arbitrary up to specification of the UTM, there is no such arbitrariness
in the inference complexity of an inference task. I end by discussing the philosophical implications of these
results, e.g., for whether the universe “is" a computer.

Key words: Turing machine, automata, observation, prediction, multiverse, Kolmogorov complexity
PACS:03.65.Ta, 8920 Ff,02.70.-¢,07.05.Tp. 89.70.Eg, 01 .70.+w
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The ultimate laptop (Lloyd 2000)

Figure 1 The ultimate laptop. The ‘ultimate laptop’ is
a computer with a mass of 1 kg and a volume of 11,
operating at the fundamental limits of speed and
memory capacity fixed by physics. The uitimate laptop
performs 2mc®/arh = 5.4258 x 10* logical
operations per second on ~107" bits. Although its
computational machinery is in fact in a highly
specified physical state with zero entropy, while it
performs a computation that uses all its resources of
energy and memory space it appears to an outside
observer to be in a thermal state at ~10° degrees
Kelvin. The ultimate laptop looks like a small piece of
the Big Bang.

Ultimate physical limits to computation

Seth Lioyd

At Labwrarwy S Tabormatm Srvtemy amd TeoAsvkygn MIT Dejurtmment of MooAsow sl Dngroveriog, Marso A ssetts Jastitate of
Tachmalogy 3 360, Cambnadpe, Mossachasrss 02139, USA (illopdWwes ad)
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Is the universe a computer?

e The universe is described by a physical state (a
number in some representation)

e Obeys some dynamics

e Has some computational power ... it can be
estimated!

e Any physical system can be emulated by a
(Quantum) computer
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How powerful is it?

Computational capacity of the universe

Seth Lloyd
d’Arbeloff Laboratory for Information Systems and Technology
MIT Department of Mechanical Engineering
MIT 3-160, Cambridge, Mass. 02139
slloyd@mit.edu

Merely by existing, all physical systems register information. And by
evolving dynamically in time, they transform and process that information.
The laws of physics determine the amount of information that a physical system
can register (number of bits) and the number of elementary logic operations
that a system can perform (number of ops). The universe is a physical system.
This paper quantifies the amount of information that the universe can register
and the number of elementary operations that it can have performed over its
history. The universe can have performed no more than 10'?° ops on 10°° bits.
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But where is the boundary?

The Universe




Starlab’

How does it happen?

Cerebellum The universe y

<
1
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The universe
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The universe

Information
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Simplicity in Science

e Science is the search for simplicity in the available
(i.e., partial) information we have access to.

e Going from data to models = compression

e Science’s goal is to develop models
» Models must account for all data in an economic way
» Models must predict future data well

e Simple models appear to be superior. Why is this?
e Example: TOE
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Compression in Physics

electrical phenomena

Theory of Everything

Electronuclear force (GUT)

Strong force
su(3)

Electroweak force
su(2) x u(1)

Weak force
su(2)

And God Said
V-BE=0
v-D=p,

VxE--:—f

aD
v -l
xH z]+a‘

and then there was light. \

Electromagnetism

u(1)

Electric force

Magnetic force
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Algorithmic Complexity

e Compression and therefore simplicity were first successfully
formalized by the notion of algorithmic complexity or
Kolmogorov complexity (also known as "algorithmic
information’, "algorithmic entropy’, "Kolmogorov-Chaitin
complexity’, "descriptional complexity', shortest program
length' and "algorithmic randomness'.)

e Co-discovered during the second half of the 20th century by
Solomonoff, Kolmogorov and Chaitin

e Provides a well-established albeit formal cornerstone to
address the question of compression in brains---both natural
or artificial.

e We recall its definition: loosely, the Kolmogorov complexity of
a data set is the length of the shortest program capable of
generating it.
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More precisely

generating it. More precisely (see e.g., [14] or [15]), let U be a universal
computer (a Turing machine), and let p be a program. Then the Kolmogorov
or algorithmic complexity of a string x with respect to U is defined by
Ky(zr) = min I(p), (1)
p:U(p)=z
the minimum length over all programs that print the string z and then halt.
The restriction to programs that halt is important, for no program is the con-
catenation of other programs. An important fact is that this is a meaningful
definition: although the precise length of the minimizing program depends
on the programming language used, it does so only up to a constant. That
is, if U is a universal computer, then for any computer A we can easily show
that Ky (z) < Ka(z) + c. The constant c is the length of the program for U
to emulate A.
Godel’s incompleteness theorem implies we cannot compute in general
the KC of an arbitrary string. As is discussed in [16], Godel’s theorem is
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Examples

As a first example of this concept, consider the sequence

1212121212121212121212121212121212121212
1212121212121212121212121212121212121212

It is easy to see that its Kolmogorov Complexity is rather small. Here is a simple
algorithm to describe it:

“Repeat 12 forty times”

4811174502 8410270193 8521105559 6446229489 5493038196
4428810975 6659334461 2847564823 3786783165 2712019091
4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436
7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548.

digits 151 to 450 of pi
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A small problem

e There is no algorithm to compute K

e This is due to Godel's incompleteness theorem, or
equivalently, the halting problem (Turing)

e Cannot test programs ... no assurance that they
will ever stop

e However, in practice, if there is a finite time limit,
we can compromise
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A related approach

e Algorithmic probability

e Suppose you are given a string x. What is the probability that a
monkey typlng on a Turing machine would have generated it?

A further connection to simplicity usmg the concept of Kolmogorov or
algorithmic complexity was developed by Solomonoff [15] with an emphasis
on prediction. The fundamental concept is the algorithmic or universal (un-
normalized) probability Py (z) of a string . This is the probability that a
given string = could be generated by a random program. It is given by

Py(z)= )Y 27'® (2)
p:U(p)=z
A very important result connecting this probability to complexity theory is
that

Py(z) ~ 275V, (3)

that is, the probability of a given string to be produced by a random program
is dominated by its Kolmogorov complexity. Here the earlier remark that
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MDL

e Minimum description length is a ML algorithm for
statistical inference.

e The sum of program length plus “error out” length
IS minimized.

e Tradeoff between program length and good of fit

e Nicely related to Bayesian and KC approaches

e Use for inference relies on onnection mediated by
a “prior”. This is the universal prior of Solomonoff
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Bayes and Occam’s razor

p(a,b) = p(a|b) p(b) = p(bla) p(a)

The relation of Ockham’s razor to Bayesian theory is discussed for example
in [19], [18] and [4]. Given two models, b; and b,, their relative probability
given some data a is
p(bila) _ p(b1) p(alby) (9)
p(bala)  p(b2) p(albz)

Without access to any prior information,

p(bila)  p(alby)
p(bzla)  p(alb2)
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Jaynes and MEP

e Probability as an extension of logic

e Simple models represent in a less biased way our
knowledge of the exterior world

e Principle of indifference (Laplace). If we have no
prior information on a set of scenarios, assign
equal probabilities

e Problem: there is no canonic way to split the space
of scenarios.
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MDL, Bayes and complexity

Minimum Description Length Induction,

Bayesianism, and Kolmogorov Complexity
Paul M. B. Vitanyi and Ming Li

Abstract—The relationship between the Bayesian approach
and the minimum description length approach is established. We
sharpen and clarify the general modeling principles minimum
description length (MDL) and minimum message length (MML),
abstracted as the ideal MDL principle and defined from Bayes’s
rule by means of Kolmogorov complexity. The basic condition
under which the ideal principle should be applied is encapsulated
as the fundamental inequality, which in broad terms states that
the principle is valid when the data are random, relative to every
contemplated hypothesis and also these hypotheses are random
relative to the (universal) prior. The ideal principle states that the
prior probability associated with the hypothesis should be given
by the algorithmic universal probability, and the sum of the log
universal probability of the model plus the log of the probability
of the data given the model should be minimized. If we restrict
the model class to finite sets then application of the ideal principle
turns into Kolmogorov’s minimal sufficient statistic. In general,
we show that data compression is almost always the best strategy,
both in model selection and prediction.
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Inference - No free lunch!

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

No Free Lunch Theorems for Optimization

David H. Wolpert and William G. Macready

Abstract— A framework is developed to explore the connection
between effective optimization algorithms and the problems they
are solving. A number of “no free lunch” (NFL) theorems are
presented which establish that for any algorithm, any elevated
performance over one class of problems is offset by perfor-
mance over another class. These theorems result in a geometric
interpretation of what it means for an algorithm to be well
suited to an optimization problem. Applications of the NFL
theorems to information-theoretic aspects of optimization and
benchmark measures of performance are also presented. Other
issues addressed include time-varying optimization problems and
a priori “head-to-head” minimax distinctions between optimiza-
tion algorithms, distinctions that result despite the NFL theorems’
enforcing of a type of uniformity over all algorithms.

Index Terms — Evolutionary algorithms, information theory,
optimization.




Why is simplicity important?
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A1:. Knowledge representation

e Suppose Axioms A, B and C
“explain” (decompress to) the facts.

e You can also add D if it does not conflict with the
facts. But adding it is a disservice to your
representation of knowledge.
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A2: Evolution

e Simplicity and natural selection can guide us

e Recalling: using a model data is compressed using
finite resources. Makes sense is such models exist

e Acting: experimenting observing more efficient if there
Is a baseline model to start with; simple models easier
to run and use for decision making. Homeostasis/pain

e Predicting: if models do exist, then prediction is
possible, and this clearly helps. If the universe is simple
... everything follows.

e If the universe is not simple ...
» Evolution leads to layered simplifying processors: start simple

» Simple models represent what we know in the most
economical way, easier to use for inference and deduction

» The simpler the better: also for debugging!
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Hierarchies

Figure 16 Levels o Organ?

qui00 i 1 Nerves Sy

The brain contains the
uppermost modeling
hierarchies. Short time
scales learning.

The body, the organism
level, is at a lower
hierarchy, “learning”
taking place at longer
time scales -- eons.
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A3: Inferotropic Principle

e Modeling simply may be the best practical strategy.
But why does it work so well? |s the universe
simple?

» The universe is simple because it arises from random
programs

» Inferotropism

— The universe is simple because inference machines
can only exist in simple universes.

— There are many universes, or we only collect a subset
of the available data ... the one which can actually
sustain simplicity and inference machines




Level 1: Regions bevond our cosmic horizon Level 4: Other mathematical structures

Features Features

\ssumptions ! \ssumpto

Universe or
o> Multiverse?
& Which?

Level 2: Other post-inflation bubbles Level 3: The Many Worlds of Quantum Physics

Features ) } Features

| \vsumptron
\ssumption b videnmce

Fvidence

The Multiverse Hierarchy
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|s this the answer?

The relevance of simplicity is also at the core of the question of why
mathematics and simple theories turn out to be the right ones in physics and
science—a mystery that has perplexed many thinkers, including Einstein and
Feynman. A possible answer is that inference machines will by their nature
always seek and find some simplicity, even in random data. Let us recall
here that any desired sequence can be found in a truly random number. An
inference machine exposed to a lucky portion of the stream will deduce all
sorts of things which may just be a passing mirage. This is the complexity, or
rather simplicity, version of the Anthropic principle (see e.g., [23]). We could
also say that without simplicity there would not be infererence machines.

e Or is god a monkey typing away on Turing machine to ensure
that algorithmic probability rules?




Applications In neuroscience
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Simplicity in brains

e If reality is just a model in the brain,
» and if simple models are better than complex models,
» then reality = simplicity

e But is this really true? Can we test it?
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ERPs and MMN

e Event-Related Potentials, ERPs, are a useful non-invasive
window for the study of fast (ms) cerebral processes.

e ERPs involve searching for event-locked regularities of brain
dynamics, averaging multiple time intervals that share the
same experimental conditions.

e Mismatch negativity (MMN) is an involuntary auditory ERP
which peaks at 100-200 ms when there is a violation
(deviant tone) of a regular pattern (standard tone sequence).

e The MMN mechanism appears to correspond to a primitive
intelligence, as the wave produced with the violation of
regularities—even those of an abstract nature
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Standard and Deviant

 Binaural stimulation
* EEG recorded using 30 electrodes with a nose reference plus 2 EOG
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D = deviant, 75 ms
S = standard, 25 ms

Standard Deviant
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ABAB ABAB ABAB BABA

e This sequence does not generate MMN
»ABAB ABAB ABAB BABA ABAB ABAB ABAB BABA

e The MMN does not activate. Or is there a generic rule
used? “Alternate within a block™.

Sn+1 p— NOT(Sn)

S1 = Ry(R3(AB) + R,(—=) + R3(BA) + R,(-))
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ABABABABABABBABA

e This sequence does generate MMN:
»ABABABABABABBABAABABABABABABBABA

elt is the same sequence as before, but spaces are
removed. Alternation rule is violated.

Sn+1 p— NOT(Sn)
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Test model building using MMN

e \V can try to use complexity measures to explore
model building in MMN - future work.

eIs MMN at the bottom of a hierarchy?

Z1= ABABAB - - ABABAB - - ABABAB ...
Z2= AABABA - - AABABA - - AABABA ..

Z3—= BAABAB - - BAABAB - - BAABAB ...

7Z1= Ry(Rs(AB) + R,(-))
Z3= Ro(Ry(BA) + Ry(AB) + R, (-))
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Music and MMN

e Music may be a phenomenon associated to model
building: looking for simplicity in data.




Application to Presence
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Different levels of Presence

10 Mapping our brains to computers (the singularity)

9 Jacking in (invasive interaction)

8 Non-invasive Brain 2 Machine + Machine 2 Brain interaction

7 Immersion (HMD/CAVE + haptics + ...) (also MR/AR) using natural senses
FUZZY Raving DIVIDE
Disneyworld; 2nd Life;

Cinema/IMAX; telepresence

Theater

Books, mobile phones, chatting
Storytelling

Imagery

pitpsi

N
<
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Hierarchies

e From transducers to social phenomena
e MMN at the bottom, for example.

e In Presence research, we see evidence for such
hierarchies: e.g., sensorimotor contingencies=low
level model consistency.

e Two recently proposed Presence dimensions
(Slater)

»Pl: Place lllusion (M. Slater)
»Psi: Plausibility

e Both are part of the same picture: model building
at different levels of the hierarchy.
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Modeling, Pl and Psi

e PI. the strong illusion of being in a place in spite of the
sure knowledge that you are not there: low level modeling

e Psi: the illusion that what is apparently happening is real
ly happening (even though you know for sure that it is
not).

e Thus, Psi represents an escalation in the creation of
illusions higher up (but not to the top) in the modeling
hierarchy.

e From the point of experience design, we could also add
that what is intended to appear to be happening is the
actual perceived illusion.

e The ultimate level in this context may be called “Susi” --
“suckership”: believing all the way, “being sucked in”
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Is this (M+E) possible?

A simple mathematical formulation for Presence follows a Bayesian model
of the probability of observing a set of events given a model of reality M:

P(E, M) = P(E|M) - P(M). (11)

e Consistency of new data with a given model = P(Events|M) = Euvi-
dence

e Possibility: consistency with already established models = P(M)
Prior
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M-Pl and M-Psi

e ‘Does the intended model My feel real?”

To be more precise we can define the M -Place Illusion generated by a VR
system with underlying model Mx to be

PI[Mx] = P(Mk, E) = P(E|MY) P(Mk), (12)

where M} refers to the reality model low level (e.g., perceptual) aspects.

Similarly, the Plausibility Psi will be proportional to PI, to the evidence
for higher order models, and to their prior. To be more precise we define the

M -Plausibility of a model Mx given a set of events E to be

Psi[ M| P(Mx,E) = P(M%,E) - P(M%,E)
PI[Mx] - P(E|Mx) - P(Mx|Eoa) (13)
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Plausibility of Events

e ‘Is there a model | can construct where this is plausible?”

Psi = max P(M, E)

e ‘Is this really happening??”

Psir = » P(M,E) = P(E)

e Keep your VR experience “simple™!
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RARE

eLet RARE (Real Actions in Real Environments) be
an environment with underlying model My intended g}/ ¥
to fool the subject into believing they have travelled '_ o<
In time and space to the Far West. N

e Does M,, feel real?

“You have till sundown to get rid

PI[Mw] — P(E‘M‘I/V)P(M‘I/V) — 1 of those awful curtains.”
Psi[Mw] = PI[Mw]- P(E|My,) - P(My,|Eoa)

e Isthere a model? Is this at all real?

Psi = max P(M, E) Psir = » P(M,E) = P(E)
M




Other applications
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Model building and simplicity

*Robotics

eEducation

Mathematics

Machine Learning

Fundamental Physics

*Biology (evolution is computation)




Self-Model synthesis Exploratory Action synthesis

Resilient Machines Through
Continuous Self-Modeling

Josh Bongard,™*t Victor Zykov,* Hod Lipson™~

Fig. 1. Outline of the algorithm. The robot continuously cycles through action execution. (A and B)
Self-model synthesis. The robot physically performs an action (A). Initially, this action is random;
later, it is the best action found in (C). The robot then generates several self-models to match
sensor data collected while performing previous actions (B). It does not know which model is
correct. (€) Exploratory action synthesis. The robot generates several possible actions that
disambiguate competing self-models. (D) Target behavior synthesis. After several cycles of (A) to
(C), the currently best model is used to generate locomotion sequences through optimization. (E)
The best locomotion sequence is executed by the physical device. (F) The cycle continues at step (B)
to further refine models or at step (D) to create new behaviors.
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Robust Machines Through Continuous Self-Modeling
Josh Bongard, Victor Zykov, Hod Lipson

Computational Synthesis Laboratory
Sibley School of Mechanical and Aerospace Engineering
Cornell University
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The Automation of Science

Ross D. King,™* Jem Rowland,* Stephen G. Oliver,? Michael Young,> Wayne Aubrey,’
Emma Byrne,* Maria Liakata,® Magdalena Markham,* Pinar Pir,” Larisa N. Soldatova,*
Andrew Sparkes,* Kenneth E. Whelan,” Amanda Clare*

The basis of science is the hypothetico-deductive method and the recording of experiments in
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,”
which advances the automation of both. Adam has autonomously generated functional genomics
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses
by using laboratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research, we have developed an ontology and logical language.
The resulting formalization involves over 10,000 different research units in a nested treelike
structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical
description. This formalization describes how a machine contributed to scientific knowledge.

scale:1m




Physical System Schematic Experimental Data
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Distilling Free-Form Natural Laws
from Experimental Data

Michael Schmidt® and Hod Lipson®’*

For centuries, scientists have attempted to identify and document analytical laws that underlie

physical phenomena in nature. Despite the prevalence of computing power, the process of finding
natural laws and their corresponding equations has resisted automation. A key challenge to finding
analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate
accelerated as laws found for simpler systems were used to bootstrap explanations for more
complex systems, gradually uncovering the “alphabet” used to describe those systems.



The organism as a computer
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The organic scale

e Organisms can be thought as:

» Organism genotypes = program or model -- where learning takes
place

» Organism phenotypes = computers running programs

e Def: a living being, or entity or agent, can be defined to be
a replicating program that successfully encodes and runs
a (partial) model of reality, thus increasing its chances of
survival as a replicating program.

» Note: some homeostasis is needed for replication

e Evolution: the search for better programs. Simplicity may
play a role here as well. If so, physiology should find
simplicity.
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Organisms and information

e Evolution as the search for simple programs (DNA) that replicate well
e Homeostatis is necessary (but not sufficient)
-

The universe
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01010101010101010101010
10101010101010101010100
10101010101010100101010
10101010101010101010100
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Why is it Physiologic to be Multiscale?

Healthy function requires capability to cope
with unpredictable environments

ree (fractal) systems generate broad
f long-range correlated responses —»

+
Yy

f characteristic time scale helps
tting locked into a rigid (single)

age-/jocKing)
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Scale invariance: why?

e Modeling + evolution= hierarchies in organisms

e Scale invariance and observed phenomenon in
physiological systems

.
l“‘is.‘ A0 3 oD v O L) A -
D e M A -

ANIVINIA

e Are scale invariances Iin physiological signals, which relate
to control and homeostasis (self-organization), a
consequence of the process of evolution building

nierarchical modeling (aka control) systems?

e Is complexity the result of ... simplicity?

e How can we test this? An evolutionary approach could be
Interesting.
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e Loss of complexity as organisms age ... modeling
breakdown
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Even bacteria seem to do It...

Received 25 March; accepted 7 May 2009. A R T ‘ C l_ E S
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Adaptive prediction of environmental

changes by microorganisms

Amir Mitchell’, Gal H. Romano?, Bella Groisman', Avihu Yona', Erez Dekel’, Martin Kupiec?, Orna Dahan'*
& Yitzhak Pilpel'**

Natural habitats of some microorganisms may fluctuate erratically, whereas others, which are more predictable, offer the
opportunity to prepare in advance for the next environmental change. In analogy to classical Pavlovian conditioning,
microorganisms may have evolved to anticipate environmental stimuli by adapting to their temporal order of appearance.
Here we present evidence for environmental change anticipation in two model microorganisms, Escherichia coli and
Saccharomyces cerevisiae. We show that anticipation is an adaptive trait, because pre-exposure to the stimulus that typically
appears early in the ecology improves the organism’s fitness when encountered with a second stimulus. Additionally, we
observe loss of the conditioned response in E. coli strains that were repeatedly exposed in a laboratory evolution experiment
only to the first stimulus. Focusing on the molecular level reveals that the natural temporal order of stimuli is embedded in the
wiring of the regulatory network—early stimuli pre-induce genes that would be needed for later ones, yet later stimuli only
induce genes needed to cope with them. Our work indicates that environmental anticipation is an adaptive trait that was
repeatedly selected for during evolution and thus may be ubiquitous in biology.




Conclusions
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Discussion

e A neurocentric, subjective approach to cognition proposed where Information is
the most fundamental physical concept.

e Evolution and natural selection lead to compressing or modeling systems,
iIncluding auto-modeling. Modeling is equivalent to compression or the search
for simplicity. In brains, or organisms.

e In this sense, reality, the construction of models from information, is equivalent
to simplicity (in brains).

e Simplicity can be naturally described by Kolmogorov or algorithmic complexity.

e The discussion is intended to apply to any cognitive system, simple or
complex, natural or artificial (e.g., robots).

e Simplicity may be experimentally explored (e.g., MMN)

e DNA can be thought of as such a cognitive system (with a very long time
scales). There may be simplicity lurking in physiology. Is this the origin of scale
iInvariance? Hierarchies --- recursivity. An evolutive approach useful.

For more info Google “Reality as Simplicity” -- http://arxiv.org/abs/0903.1193
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Some relevant quotes

e Reality is merely an illusion, albeit a very persistent one.
[Einstein]

e Everything should be made as simple as possible, but not
simpler. [Einstein]

e Pluralitas non est ponenda sine neccesitate [Ockham, 14th AC]
models should be no more complex than sufficient to explain the data

e As for the simplicity of the ways of God, this holds properly with
respect to his means, as opposed to the variety, richness, and
abundance, which holds with respect to his ends or effects
[Leibniz, 1686]

e Omnibus ex nihil ducendis sufficit unum [Leibniz]




Thank you




